精英家教网 > 高中数学 > 题目详情
某次足球邀请赛的记分规则及奖励方案如下表:
胜一场平一场负一场
积分310
奖励(元/每人)15007000
当比赛进行到12轮结束(每队均要比赛12场)时,A队共积19分.
(1)试判断A队胜、平、负各几场?
(2)若每一场每名参赛队员均得出场费500元,设A队中一位参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)首先假设A队胜x场,平y场,负z场,得出x+y+z=12,3x+y=19,即可得出y,z与x的关系,再利用x≥0,y≥0,z≥0,得出即可;
(2)根据图表奖金与出场费得出W=(1500+500)x+(700+500)y+500z,进而得出即可.
解答: 解:(1)设A队胜x场,平y场,负z场,
x+y+z=12
3x+y=19
,可得:
y=19-3x
z=2x-7
…(3分)
依题意,知x≥0,y≥0,z≥0,且x、y、z均为整数,
19-3x≥0
2x-7≥0
x≥0
解得:
7
2
≤x≤
19
3
,∴x可取4、5、6   …(6分)
∴A队胜、平、负的场数有三种情况:
当x=4时,y=7,z=1;
当x=5时,y=4,z=3;
当x=6时,y=1,z=5.…(10分)
(2)∵W=(1500+500)x+(700+500)y+500z=-600x+19300
当x=4时,W最大,W最大值=-60×4+19300=16900(元).…(14分)
点评:此题主要考查了一次函数的应用以及不等式组的应用等知识,利用已知得出x+y+z=12,3x+y=19,进而得出y,z与x的关系是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=2+logc(x+2)恒过定点A,若点A在直线2ax-bx+2=0(a>0,b>0)上,则
1
a
+
1
b
的最小值为(  )
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρsinθ=m与圆ρ=4cosθ相切于极轴上方,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆柱有一个内接长方体AC1,长方体对角线长是10
2
 cm,圆柱的侧面展开平面图为矩形,此矩形的面积是100π cm2,求圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|(x+2)(x+1)(2x-1)>0},B={x|x2+ax+b≤2},且A∪B={x|x>-2},A∩B={x|
1
2
<x≤3},求常数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+bx+c)e-x(a<0)的图象过点(0,-2),且在该点的切线方程为4x-y-2=0.
(1)若f(x)在(2,+∞)上为单调增函数,求实数a的取值范围.
(2)讨论函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于弦AD,若OB=3,OC=5,则CD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,数列{cn}满足:cn=nan,且数列{cn}的前n项和为(n-1)Sn+2n(n∈N*).
(Ⅰ)求证:数列{Sn+2}是等比数列;
(Ⅱ)若点Pn的坐标为(1,bn)(n∈N*),函数g(x)=ln(1+x2)在x=tn
1
2
<t<2,且t≠1)处的切线始终与OPn平行(O为原点).求证:当
1
2
<t<2,且t≠1时,不等式
1
b1
+
1
b2
+…+
1
bn
<an-an -
1
2
对任意n∈N*都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+1)的定义域为(2,4),
(1)求f(x)的定义域;
(2)求f(2x)的定义域.

查看答案和解析>>

同步练习册答案