精英家教网 > 高中数学 > 题目详情
5.直线2x+y-1=0的倾斜角为θ.则sinθ+cosθ=$\frac{\sqrt{5}}{5}$.

分析 首先根据直线斜率求出α的正切值,然后将

解答 解:由直线2x+y-1=0方程,得直线2x+y-1=0的斜率k=-2,
∴tanθ=-2.
∴$\left\{\begin{array}{l}{sinθ=-2cosθ}\\{si{n}^{2}θ+co{s}^{2}θ=1}\\{cosθ<0}\end{array}\right.$,解得$\left\{\begin{array}{l}{sinθ=\frac{2\sqrt{5}}{5}}\\{cosθ=-\frac{\sqrt{5}}{5}}\end{array}\right.$,
所以sinθ+cosθ=$\frac{\sqrt{5}}{5}$;
故答案为:$\frac{\sqrt{5}}{5}$.

点评 本题考查直线斜率的意义,同角三角函数关系,倍角公式等三角恒等变换知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设正三角形ABC的边长为a,现有一向量$\overrightarrow{x}$与向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$的夹角分别为50°,170°,70°,则向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$在向量$\overrightarrow{x}$上的射影的和为0.类比到n边形A1A2…An,$\overrightarrow{{A}_{1}{A}_{2}}$,$\overrightarrow{{A}_{2}{A}_{3}}$,$…\overrightarrow{{A}_{n}{A}_{1}}$,与$\overrightarrow{x}$的夹角分别为θ1,θ2,…,θn,则向量$\overrightarrow{{A}_{1}{A}_{2}}$,$\overrightarrow{{A}_{2}{A}_{3}}$,$…\overrightarrow{{A}_{n}{A}_{1}}$在向量$\overrightarrow{x}$上的射影的和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x=1在不等式k2x2+kx-2<0的解集内,则k的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+$\frac{1}{x}$.
(1)求f(x)的定义域;
(2)判断函数f(x)在区间[2,+∞)上的增减性,并用定义证明;
(3)求函数f(x)在[2,+∞)上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},B⊆A.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f($\sqrt{x}$+1)=x+$\sqrt{x}$,则f(x+1)=x2+2x,(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,则f(2)+f($\frac{1}{2}$)=(  )
A.0B.1C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式:-3x2+3x+10<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)若f(x)=(m-1)x2+mx+3(x∈R)是偶函数,求f(x)的单调递增区间.
  (2)若f(x)=(m2+2m-3)x2+mx+m+3(x∈R)是奇函数,求m值.

查看答案和解析>>

同步练习册答案