精英家教网 > 高中数学 > 题目详情
14.sin(-570°)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 直接利用诱导公式化简,利用特殊角的三角函数值求解即可.

解答 解:sin(-570°)=sin(720°-570°)=sin150°=$\frac{1}{2}$.
故选:A.

点评 本题考查诱导公式的应用,特殊角的三角函数求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.南京东郊有一个宝塔,塔高60多米,九层八面,中间没有螺旋的扶梯.宝塔的扶梯有个奥妙,每上一层,就少了一定的级数.从第四层到第六层,共有28级.第一层楼梯数是最后一层楼梯数的3倍.则此塔楼梯共有(  )
A.117级B.112级C.118级D.110级

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$\overrightarrow{a}$=(1,λ,2),$\overrightarrow{b}$=(2,-1,1),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则λ的值为-17或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)=x2lnx,由函数乘积的求导法则,(x2lnx)′=2xlnx+x,等式两边同时求区间[1,e]上的定积分,有:$\int_1^e{{{({{x^2}lnx})}^'}dx}=\int_1^e{2xlnxdx}+\int_1^e{xdx}$.
移项得:$\int_1^e{2xlnxdx}=({{x^2}lnx})|_1^e-\int_1^e{xdx}={e^2}-({\frac{1}{2}{e^2}-\frac{1}{2}})=\frac{1}{2}{e^2}+\frac{1}{2}$.
这种求定积分的方法叫做分部积分法,请你仿照上面的方法计算下面的定积分:$\int_1^e{lnxdx}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量X~N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=(  )
A.0.4B.0.6C.0.7D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算不定积分∫2ex•sinexdx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算:sin(-690°)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量|$\overrightarrow{a}$|=5,$\overrightarrow{b}$=(2,1)且$\overrightarrow{a}$=λ$\overrightarrow{b}$(λ>0),则$\overrightarrow{a}$的坐标是(  )
A.($\sqrt{5}$,2$\sqrt{5}$)B.(2$\sqrt{5}$,$\sqrt{5}$)C.(-$\sqrt{5}$,-2$\sqrt{5}$)D.(-2$\sqrt{5}$,-$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形

查看答案和解析>>

同步练习册答案