已知抛物线y2=4px(p>0)与双曲线
-
=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( ).
A.
B.
+1 C.
+1 D. ![]()
科目:高中数学 来源: 题型:
如图,F1,F2分别是双曲线C:
-
=1(a,b>0)的左,右焦点,B是虚轴的端点,直线F1B❶与
C的两条渐近线分别交于P,Q两点,❷线段PQ的垂直平分线❸与x轴交于点M.若|MF2|=|F1F2|,❹
则C的离心率是 ( ).
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
有一动圆P恒过定点F(1,0),且与y轴相交于点A,B,若△ABP为等边三角形,则圆心P的轨迹方程是( ).
A.
-
=1 B.
+
=1
C.
+
=1 D.
-
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为
.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
平面直角坐标系xOy中,过椭圆M:
+
=1(a>b>0)右焦点的直线x+y-
=0交M于A,B两点,P为AB的中点,且OP的斜率为
.
(1)求M的方程;
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ABCD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
若AB是过椭圆
+
=1(a>b>0)中心的一条弦,M是椭圆上任意一点,且AM、BM与两坐标轴均不平行,kAM,kBM分别表示直线AM,BM的斜率,则kAM·kBM=( ).
A.-
B.-
C.-
D.-![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com