精英家教网 > 高中数学 > 题目详情
4.已知两个单位向量$\overrightarrow i,\overrightarrow j$互相垂直,且向量$\overrightarrow k=5\overrightarrow i+3\overrightarrow j$,则|$\overrightarrow{k}$-$\overrightarrow{i}$|=5.

分析 由两向量垂直可得数量积为0,运用向量的加减运算和模的公式,化简计算即可得到所求值.

解答 解:因为两个单位向置$\overrightarrow i,\overrightarrow j$互相垂直,且向量$\overrightarrow k=5\overrightarrow i+3\overrightarrow j$,
所以$\overrightarrow k-\overrightarrow i=4\overrightarrow i+3\overrightarrow j$,
${|{\overrightarrow k-\overrightarrow i}|^2}=9+16=25$,
即$|{\overrightarrow k-\overrightarrow i}|=5$.
故答案为:5.

点评 本题考査向量垂直的条件:数量积为0,及向量的模的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|-1<x<3},B={x|-2<x<m+2},若x∈B是x∈A的必要不充分条件,则实数m的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有$f[{f(x)+{{log}_{\frac{1}{3}}}x}]=4$,且方程|f(x)-3|=x3-6x2+9x-4+a在区间[0,3]上有两解,则实数a的取值范围是(  )
A.0<a≤5B.a<5C.0<a<5D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果a>b>0,那么下面一定成立的是(  )
A.a-b<0B.ac>bcC.$\frac{1}{a}$<$\frac{1}{b}$D.a3<b3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在我国古代著名的数学专著《九章算术》里有-段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里:驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:需9日相逢.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{|x|},}&{x≤\frac{1}{2}}\\{\sqrt{2}|lo{g}_{2}x|,}&{x>\frac{1}{2}}\end{array}\right.$,方程f(x)-c=0有四个根,则实数c的取值范围是(  )
A.[1,$\sqrt{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x∈R,ax2+2x+3>0.若命题p为假命题,则实数a的取值范围是(  )
A.{a|a<$\frac{1}{3}$}B.{a|0<a≤$\frac{1}{3}$}C.{a|a≤$\frac{1}{3}$}D.{a|a≥$\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在区间[0,4]上随机取一个数x,则事件“$-1≤{log_{\frac{1}{2}}}({x+\frac{1}{2}})≤1$”发生的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,G点为△ABC的重心,a,b,c分别为角A,B,C的对边,若b2+c2+bc=a2,且S△ABC=2$\sqrt{3}$,则|AG|的最小值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案