| A. | (0,$\sqrt{2}$) | B. | (1,2) | C. | ($\frac{2\sqrt{3}}{3}$,2) | D. | ($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$) |
分析 由A=2B$<\frac{π}{2}$,可得B<$\frac{π}{4}$.由C=π-3B<$\frac{π}{2}$,可得B>$\frac{π}{6}$,可得:cosB∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),根据正弦定理可得范围b=$\frac{1}{cosB}$∈($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).
解答 解:锐角△ABC中,∵A=2B$<\frac{π}{2}$,
∴B<$\frac{π}{4}$.
∵根据C=π-3B<$\frac{π}{2}$,可得B>$\frac{π}{6}$,即$\frac{π}{6}$<B<$\frac{π}{4}$,可得:cosB∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),
∴根据正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2sinB}{2sinBcosB}$=$\frac{1}{cosB}$∈($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).
故选:D.
点评 本题主要考查三角形的内角和公式、正弦定理,函数的单调性的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分且必要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{23}{5}$,+∞) | B. | [-$\frac{23}{5}$,1] | C. | (1,+∞) | D. | (-∞,-$\frac{23}{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\sqrt{3}+1$ | D. | $\frac{1}{2}({\sqrt{3}+1})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com