精英家教网 > 高中数学 > 题目详情
20.命题“若a>b,则a2>b2”的逆否命题是如果a2≤b2,则a≤b”.

分析 把命题的条件否定做结论,原命题的结论否定做条件,即可写出原命题的逆否命题.

解答 解:由逆否命题的定义可知:命题“若a>b,则a2>b2”的逆否命题是:“如果a2≤b2,则a≤b”.
故答案为:“如果a2≤b2,则a≤b”.

点评 本题考查四种命题的转化关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x${\;}^{-{t}^{2}+2t+3}$为偶函数(t∈z),且在x∈(0,+∞)单调递增.
(1)求f(x)的表达式;
(2)若函数g(x)=loga[a$\sqrt{f(x)}$-x]在区间[2,4]上单调递减函数(a>0且a≠1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=f(x)的定义域是R,函数g(x)=f(x+5)+f(1-x),若方程g(x)=0有且仅有7个不同的实数解,则这7个实数解之和为-14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在锐角△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,A=2B,那么b的取值范围是(  )
A.(0,$\sqrt{2}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,2)D.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a、b、c分别为△ABC三个内角A、B、C所对的边长,∠A=60°,且acosB-bcosA=$\frac{3}{5}$c,则$\frac{2absinC}{{a}^{2}+{b}^{2}-{c}^{2}}$=(  )
A.-5$\sqrt{3}$B.-4$\sqrt{3}$C.4$\sqrt{3}$D.5$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且a1=1,Sn=Sn-1+an-1+2n-2,(n≥2)
(1)求数列{an}的通项公式;
(2)若xn=1+$\frac{1}{{a}_{n}}$,设数列{xn}的前n项积为Tn,求证:
(i)(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
(ii)Tn≤2$(1+\frac{1}{{2}^{n}})^{{2}^{n}-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数a满足sina2+sina>a2+a,则a的取值范围是-1<a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{4}$=1(a>0)的离心率为$\sqrt{5}$,抛物线C:x2=2py(p>0)的焦点在双曲线的顶点上.
(1)求抛物线C的方程;
(2)过M(-1,0)的直线l与抛物线C交于E,F两点,有过E,F作抛物线C的切线l1、l2,当l1⊥l2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若x≥0,y≥0,且x+2y=1,则4x+y2的最小值为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案