精英家教网 > 高中数学 > 题目详情
15.已知a、b、c分别为△ABC三个内角A、B、C所对的边长,∠A=60°,且acosB-bcosA=$\frac{3}{5}$c,则$\frac{2absinC}{{a}^{2}+{b}^{2}-{c}^{2}}$=(  )
A.-5$\sqrt{3}$B.-4$\sqrt{3}$C.4$\sqrt{3}$D.5$\sqrt{3}$

分析 由条件利用正弦定理可得sinAcosB-sinBcosA=$\frac{3}{5}$sinC,又sinC=sin(A+B)=sinAcosB+cosAsinB,可得$\frac{tanA}{tanB}$=$\frac{sinAcosB}{sinBcosA}$=4,由A=60°可得sin60°、cos60°、tan60°的值,可得tanB,进而可得sinB、cosB的值.利用诱导公式求得sinC的值,再利用正弦定理即可得解.

解答 (本题满分为14分)
解:△ABC中,由条件利用正弦定理,可得sinAcosB-sinBcosA=$\frac{3}{5}$sinC.(2分)
又sinC=sin(A+B)=sinAcosB+cosAsinB,
所以,$\frac{2}{5}$sinAcosB=$\frac{8}{5}$sinBcosA,(5分)
可得$\frac{tanA}{tanB}$=$\frac{sinAcosB}{sinBcosA}$=4.(7分)
由A=60°,则sinA=$\frac{\sqrt{3}}{2}$,cosA=$\frac{1}{2}$,tanA=$\sqrt{3}$,
可得tanB=$\frac{\sqrt{3}}{4}$,进而可得cosB=$\frac{4\sqrt{19}}{19}$,sinB=$\frac{\sqrt{57}}{19}$.(10分)
故sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{5\sqrt{57}}{38}$,
故:$\frac{2absinC}{{a}^{2}+{b}^{2}-{c}^{2}}$=$\frac{2sinAsinBsinC}{si{n}^{2}A+si{n}^{2}B-si{n}^{2}C}$=$\frac{2×\frac{\sqrt{3}}{2}×\frac{\sqrt{57}}{19}×\frac{5\sqrt{57}}{38}}{\frac{3}{4}+\frac{57}{361}-\frac{25×57}{38×38}}$=-5$\sqrt{3}$.(14分)
故选:A.

点评 本题主要考查三角函数的恒等变换及化简求值,正弦定理的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.“x≥3”是“x>3”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.据我国西部各省(区、市)2013年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间[28,38)上的频率是(  )
A.0.3B.0.4C.0.5D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C经过抛物线y=x2-4x+3与坐标轴的三个交点.
(1)求圆C的方程;
(2)设直线2x-y+2=0与圆C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知锐角△ABC中,满足cos($\frac{π}{4}$+A)cos($\frac{π}{4}$-A)=$\frac{1}{4}$,则A的值等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“若a>b,则a2>b2”的逆否命题是如果a2≤b2,则a≤b”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*),其前n项和为Sn
(1)求a2,a3的值,并求数列{an}的通项公式;
(2)令cn=(1-$\frac{{S}_{n}}{{S}_{n+1}}$)•$\frac{1}{\sqrt{{S}_{n+1}}}$,并记Tn=c1+c2+…+cn,求证:Tn<2($\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线中心在原点且一个焦点为F1$(-\sqrt{5}{,^{\;}}0)$,点P位于该双曲线上,线段PF1的中点坐标为(0,2),则双曲线的方程为(  )
A.$\frac{{x}^{2}}{2}$-y2=1B.${x^2}-\frac{y^2}{4}=1$C.$\frac{x^2}{2}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b∈R,则“a>b>0”是“$\frac{1}{a}$$<\frac{1}{b}$”的(  )条件.
A.充分而不必要B.必要而不充分
C.充分必要D.既不充分也不必要

查看答案和解析>>

同步练习册答案