【题目】对于函数y=3sin(2x + )
(1)求最小正周期、对称轴和对称中心;
(2)简述此函数图象是怎样由函数y=sinx的图象作变换得到的.
【答案】(1) , , (2)见解析
【解析】试题分析:(1)根据正弦函数对应性质: 求最小正周期、对称轴和对称中心(2)正弦函数图像变换,分振幅、相位、伸缩三种,注意相位变换时是对x而言
试题解析:解:(1)对于函数y=3sin(2x+),最小正周期为=π.
对于函数y=sin(2x+)﹣1,令2x+=kπ+,k∈Z,
解得x=+,k∈Z,故函数的对称轴方程为x=+,k∈Z,
令2x+=kπ,k∈Z,解得x=﹣,k∈Z,
故函数的对称中心是(﹣,0),k∈Z.
(2)把函数y=sinx的图象向左平移个单位,可得y=sin(x+)的图象;
再把横坐标变为原来的倍,可得y=sin(2x+)的图象;
再把纵坐标变为原来的3倍,可得y=3sin(2x+)的图象.
科目:高中数学 来源: 题型:
【题目】在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)﹣f(x).已知某服装公司每天最多
生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.
(1)求出利润函数p(x)及其边际利润函数Mp(x);
(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;
(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知右焦点为F(c,0)的椭圆M: =1(a>b>0)过点 ,且椭圆M关于直线x=c对称的图形过坐标原点.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于y轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称原点为E,证明:直线PE与x轴的交点为F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点 ,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 是圆柱的母线, 是的直径, 是底面圆周上异于的任意一点, , .
(1)求证:
(2)当三棱锥的体积最大时,求与平面所成角的大小;
(3)上是否存在一点,使二面角的平面角为45°?若存在,求出此时的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com