精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-a(x+1),在x=ln2处的切线的斜率为1.
(1)求a的值及函数f(x)的最小值;
(2)若对于任意x∈[0,+∞)时,f(x)≥mx2恒成立,求实数m的取值范围.
考点:利用导数研究曲线上某点切线方程,函数恒成立问题
专题:计算题,导数的综合应用
分析:(1)利用导数与切线的关系求得a,再利用导数判断函数的单调性求得最小值;
(2)令g(x)=f(x)-mx2,利用导数求得g(x)的最小值,即可得出结论.
解答: 解:(1)∵f(x)=ex-a(x+1),
∴f′(x)=ex-a,
∵函数f(x)=ex-a(x+1)在x=ln2处的切线的斜率为1,
∴f′(ln2)=2-a=1,
∴a=1,
∴f(x)=ex-x-1,f′(x)=ex-1,
∴x<0时,f′(x)<0,x>0时,f′(x)>0,
∴x=0时,函数有极小值,即为最小值,最小值为0;
(2)令g(x)=f(x)-mx2,则g′(x)=ex-1-2mx,
设h(x)=g′(x)=ex-1-2mx,则h′(x)=ex-2m,
①m≤
1
2
时,h′(x)≥0,h(x)≥h(0)=0,∴g′(x)≥0,∴g(x)≥g(0)=0,满足题意;
②m>
1
2
时,h′(x)<0,h(x)是减函数,h(x)≤h(0)=0,∴g(x)是减函数,
∴g(ln2m)≤g(0)=0,不满足题意.
则实数m的取值范围是:(-∞,
1
2
].
点评:本题主要考查利用导数研究函数的切线问题、研究函数的单调性最值等知识,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a=20.5,b=log20.5,c=log21.5,则(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式
1=1                     第一个式子
2+3+4=9                 第二个式子
3+4+5+6+7=25            第三个式子
4+5+6+7+8+9+10=49       第四个式子
照此规律下去
(Ⅰ)写出第6个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算[(1+2i)•i100+(
1-i
1+i
5]2-(
1+i
2
20

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,∠DAB=45°,AA1=AB=2,AD=2
2
,点E是 C1D1的中点,点F在B1C1上且B1F=2FC1
(Ⅰ)证明:AC1⊥平面EFC;
(Ⅱ)求锐二面角A-FC-E平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(x2-1)的定义域为A,g(x)=
x-m-1
2m-x
(m<1)的定义域为B.若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}的首项a1=1,且第二项、第五项、第十四项成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,an=bn+1-bn,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在给定的坐标系中画出函数y=2|x-1|的图象,并指出其值域和单调区间
(2)函数f(x)=loga(x2-x+2),若f(x)>loga4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

图中的三个直角三角形是一个几何体的三视图,
(1)求该几何体的体积.
(2)求该几何体的外接球的表面积.(用含π的式子表示)

查看答案和解析>>

同步练习册答案