精英家教网 > 高中数学 > 题目详情
已知公差不为零的等差数列{an}的首项a1=1,且第二项、第五项、第十四项成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,an=bn+1-bn,求数列{bn}的通项公式.
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:(1)用首项和公差表示等差数列的第二项、第五项、第十四项,利用等比中项概念列式求得公差,等差数列的通项公式可求;
(2)利用叠加法,即可求数列{bn}的通项公式.
解答: 解:(1)在等差数列{an}中,a2=a1+d,a5=a1+4d,a14=a1+13d,
因为首项a1=1,且第二项、第五项、第十四项成等比数列,
所以(1+4d)2=(1+d)(1+13d),
因为d≠0,
所以d=2,
所以an=1+2(n-1)=2n-1;
(2)∵an=bn+1-bn
∴bn-b1=(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+3+…+(2n-3)=(n-1)2
∵b1=1,
∴bn=(n-1)2+1.
点评:本题考查了等差数列的通项公式,考查叠加法,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-(sinx+cosx)(sinx-cosx).
(1)若f(x)=1,求x的值;
(2)求函数y=f(x)的单调增区间;
(3)若x∈[0,
π
2
],求函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(普通班学生做)在△ABC中,tanA=
1
4
,tanB=
3
5

(1)求角C的大小;
(2)若△ABC最大边的边长为
17
,求最小边的边长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x+1),在x=ln2处的切线的斜率为1.
(1)求a的值及函数f(x)的最小值;
(2)若对于任意x∈[0,+∞)时,f(x)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
e1
e2
的夹角为α,且cosα=
1
3
,向量
a
=3
e1
-2
e2
b
=3
e1
-
e2
的夹角为β,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,命题p:函数f(x)=ax+b在(-∞,+∞)上单调递增,命题q:关于x的方程x2+2x+a=0的解集不空,若p∨(¬q)为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

①若2≤x≤3,6≤y≤9,求
3x
2y
的范围;
②解不等式x>
x+3
x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b,c∈R),已知f(1)=1,f(-1)=0,并且对任意x∈R,均有f(x)≥x.
(1)求函数f(x)的解析式;
(2)设F(x)=
f(x)
,0≤x≤1
-
f(x)
,-1≤x<0
,解不等式F(x)>F(-x)+2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1,a2,a3∈R+,且a1+a2+a3=m.求证:
(1)a12+a22+a32
m2
3
;      
(2)
1
a1
+
1
a2
+
1
a3
9
m

查看答案和解析>>

同步练习册答案