精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=a,BC=1,∠BAD=60°,E为线段CD(端点C、D除外)上一动点,将△ADE沿直线AE翻折,在翻折过程中,若存在某个位置使得直线AD与BC垂直,则a的取值范围是( )

A.( ,+∞)
B.( ,+∞)
C.( +1,+∞)
D.( +1,+∞)

【答案】D
【解析】解:设翻折前的D记为D′,∵AD⊥BC,BC∥AD′,则在翻折过程中,存在某个位置使得直线AD与BC垂直,只需保证∠DAD′=900 , ∵∠D′AE=∠DAE,由极限位置知,只需保证∠D′AE≥45°即可.
在△D′AE中,AD′=1,∠D′AE=45°,∠AD′E=120°,则∠D′EA=15°,
由正弦定理知, ,则D′E=
因为E为线段CD(端点C,D除外)上的一动点,
则a>
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为 、2 ,则三棱锥A﹣BCD的外接球的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]时,f(x)= ,a=f( ),b=f( ),c=f( ),则(
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数

(1)若函数处的切线斜率为2的值

(2)求函数的单调区间

(3)若函数有两个极值点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】输入x,求函数y=的值的程序框图如图C17所示.

(1)指出程序框图中的错误之处并写出正确的算法步骤.

(2)重新绘制程序框图,并回答下面提出的问题.

①要使输出的值为7,则输入的x的值应为多少?

②要使输出的值为正数,则输入的x应满足什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 的中点, 为线段上的动点,过点 的平面截该正方体所得的截面为,则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;

③当时, 的交点满足

④当时, 为五边形;

⑤当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形与直角梯形所在平面互相垂直,

(I)求证: 平面

(II)求证: 平面

(III)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设动点到两定点 的距离的比值为的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)若直线过点,且点到直线的距离为求直线的方程,并判断直线与曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:

(1)约定见车就乘;

(2)约定最多等一班车.

查看答案和解析>>

同步练习册答案