【题目】某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中间的矩形的高.
(3)若从分数在和分数在90分以上的试卷选3份试卷进行试卷分析,求最高分的试卷被抽中的概率.
【答案】(1)频数0.08,全班人数25人;(2)频数4,高0.016;(3)
【解析】
(1)由频率分布直方图得分数在,的频率为0.08,由茎叶图得分数在,的频数为2,由此能求出全班人数;
(2)由茎叶图得分数在,之间的频数为4,由此能求出矩形的高;
(3)分数在,的试卷有4份,分数在90分以上的试卷中选;中2份,基本事件总数,最高分的试卷被抽中包含的基本事件个数,由此能求出最高分的试卷被抽中的概率.
解:(1)由频率分布直方图得分数在,的频率为:,
由茎叶图得分数在,的频数为2,
全班人数为:,
(2)由茎叶图得分数在,之间的频数为:
,
矩形的高为:.
(3)从分数在,和分数在90分以上的试卷选3份试卷进行试卷分析,
分数在,的试卷有4份,
分数在90分以上的试卷中选中2份,
基本事件总数,
最高分的试卷被抽中包含的基本事件个数,
最高分的试卷被抽中的概率.
科目:高中数学 来源: 题型:
【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.
试估计该河流在8月份水位的中位数;
(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;
(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
方案 | 防控等级 | 费用(单位:万元) |
方案一 | 无措施 | 0 |
方案二 | 防控1级灾害 | 40 |
方案三 | 防控2级灾害 | 100 |
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.
(1)求的值;
(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?
文科生 | 理科生 | 合计 | |
获奖 | 6 | ||
不获奖 | |||
合计 | 400 |
(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校高三年级中随机抽取100名学生,对其高校招生体检表中的视图情况进行统计,得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在的概率为.
(1)求的值;
(2)若某大学专业的报考要求之一是视力在0.9以上,则对这100人中能报考专业的学生采用按视力分层抽样的方法抽取8人,调查他们对专业的了解程度,现从这8人中随机抽取3人进行是否有意向报考该大学专业的调查,记抽到的学生中视力在的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.
(1)求证:PA∥平面QBC;
(2)若PQ⊥平面QBC,求锐二面角Q-PB-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题,其中正确的是( )
A.对分类变量与的随机变量的观测值来说,越小,“与有关系”可信程度越大
B.残差点比较均匀地落在水平带状区域内,带状区域越窄,则模型拟合精度越高
C.相关指数越小,则残差平方和越大,模型的拟合效果越好
D.两个随机变量相关性越强,则相关系数的绝对值越接近
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2019年引进天然气作为能源,并将该项目工程承包给中昱公司.已知中昱公司为该市铺设天然气管道的固定成本为35万元,每年的管道维修此用为5万元.此外,该市若开通千户使用天然气用户,公司每年还需投入成本万元,且.通过市场调研,公司决定从每户天然气新用户征收开户费用2500元,且用户开通天然气后,公司每年平均从每户使用天然气的过程中获利360元.
(1)设该市2019年共发展使用天然气用户千户,求中昱公司这一年利润(万元)关于的函数关系式;
(2)在(1)的条件下,当等于多少最大?且最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com