精英家教网 > 高中数学 > 题目详情
2.将函数f(x)=sin(x+$\frac{π}{6}$)的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得图象的一条对称轴方程可以是(  )
A.$x=-\frac{π}{12}$B.$x=\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=\frac{2π}{3}$

分析 根据三角函数的图象变换关系进行求解即可.

解答 解:将函数$f(x)=sin({x+\frac{π}{6}})$的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin($\frac{1}{2}x$$+\frac{π}{6}$),
由$\frac{1}{2}x$$+\frac{π}{6}$=$\frac{π}{2}$+kπ,
即$x=\frac{2π}{3}$+2kπ,k∈Z,
∴当k=0时,函数的对称轴为$x=\frac{2π}{3}$,
故选:D.

点评 本题主要考查三角函数的图象变换关系以及三角函数对称轴的计算,求出函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设平面向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx+2$\sqrt{3}$,sinx),$\overrightarrow{c}$=(sinα,cosα),x∈R.
(1)若$\overrightarrow{a}⊥\overrightarrow{c}$,求cos(2x+2α)的值;
(2)若α=0,求函数f(x)=$\overrightarrow{a}•(\overrightarrow{b}-2\overrightarrow{c})$的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=-2$\sqrt{3}$cos2(x+$\frac{π}{4}$)+2sin(x+$\frac{π}{4}$)sin(x+$\frac{π}{4}$)+$\sqrt{3}$
(1)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时求f(x)值域;
(2)若θ∈($\frac{π}{12}$,$\frac{π}{3}$),f(θ)=$\frac{2}{3}$,求cos(2θ+$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设△ABC的内角A,B,C所对边的长分别a,b,c,若b+c=2a,3sinA=5sinB,则角C=(  )
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义域为R的函数y=f(x)的图象关于点(-1,0)对称,y=g(x)是y=f(x)的反函数,若x1+x2=0,则g(x1)+g(x2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差不为0的等差数列,a1=2,且a1,a3,a11成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={a_n}-{2^n}-\frac{1}{2}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥0}\\{-3x,x<0}\end{array}\right.$,若函数g(x)=f[f(x)]-m有且只有一个零点,则实数m的取值范围是(  )
A.(-∞,-2)B.(-2,-1)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于曲线C所在平面上的定点P0,若存在以点P0为顶点的角α,使得α≥∠AP0B对于曲线C上的任意两个不同的点A,B恒成立,则称角α为曲线C相对于点P0的“界角”,并称其中最小的“界角”为曲线C相对于点P0的“确界角”.曲线C:y=$\left\{\begin{array}{l}\sqrt{{x^2}+1}(x≥0)\\ 2-\sqrt{1-{x^2}}(x<0)\end{array}$相对于坐标原点O的“确界角”的大小是$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若关于x的方程log2$\frac{2x}{4-x}$=kx+1-2k(k为实数)有三个实数解,则这三个实数的和为6.

查看答案和解析>>

同步练习册答案