精英家教网 > 高中数学 > 题目详情
5.如图⊙O是Rt△ABC的外接圆,E、F是AB,BC上的点,且A,E,F,C四点共圆,延长BC至D,使得AC•BF=AD•BE.
(1)证明:DA是⊙O的切线;
(2)若AF•AB=1:$\sqrt{2}$,试求过点A、E、F、C的圆的面积与⊙O的面积之比.

分析 (1)证明:∠ACD=∠BEF,∠DAC=∠FBE,进而证明∠DAB=90°,即可证明DA是⊙O的切线;
(2)由(1)知AF为过A,E,F,C四点的圆的直径,利用AF:AB=1:$\sqrt{2}$,即可求过点A、E、F、C的圆的面积与⊙O的面积之比.

解答 (1)证明:由题意知∠ACD=90°,
∵A,E,F,C四点共圆,∴∠BEF=90°,即∠ACD=∠BEF.
又∵AC•BF=AD•BE,∴△ADC∽△BFE.
∴∠DAC=∠FBE.
∵∠FBE+∠BAC=90°,∴∠DAC+∠BAC=90°,
即∠DAB=90°,∴DA是⊙O的切线.…(5分)
(2)解:由(1)知AF为过A,E,F,C四点的圆的直径,
∵AF:AB=1:$\sqrt{2}$.∴AF2:AB2=1:2.
即过点A,E,F,C的圆的面积与⊙O的面积之比为1:2.…(10分)

点评 本题考查圆的切线的证明,考查四点共圆,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.复数z=$\frac{(3+4i)^{2}}{(\sqrt{2}+i)^{4}(1-2i)^{2}}$,则|$\overline{z}$|=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱柱ABC-A1BC1的底面是边长为2的正三角形,侧棱A1A⊥底面ABC,D为A1A的中点.
(Ⅰ)求证:平面B1DC⊥平面B1BCC1
(Ⅱ)若∠B1DC=90°,求点A到平面B1DC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过右焦点F且垂直于x轴的直线被椭圆截得的弦长为1,过点(m,0)(0<m<a)的直线与椭圆交于A,B两点.
(1)求椭圆的标准方程;
(2)过点 P($\frac{4}{m}$,0)作垂直于x轴的直线l,在直线l上是否存在点Q,使得△ABQ为等边三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在直角梯形EFBC中,FB∥EC,BF⊥EF,且EF=$\frac{1}{2}$FB=$\frac{1}{3}$EC=1,A为线段FB的中点,AD⊥EC于D,沿边AD将四边形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(I)求证:BC⊥平面EDB;
(Ⅱ)求点M到平面BEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若三条直线ax+y+3=0,x+y+2=0和2x-y+1=0相交于一点,则行列式$|\begin{array}{l}{a}&{1}\\{1}&{1}\end{array}|$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为$\sqrt{3}$x+y=0,则其离心率e=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).曲线C的极坐标方程为ρ=2$\sqrt{2}sin({θ+\frac{π}{4}})$.直线l与曲线C交于A,B两点,与y轴交于点 P.
(1)求曲线C的直角坐标方程;
(2)求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x(x-c)2在x=2处有极小值,则实数c的值为(  )
A.2B.2或6C.6D.4或6

查看答案和解析>>

同步练习册答案