精英家教网 > 高中数学 > 题目详情
14.已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).曲线C的极坐标方程为ρ=2$\sqrt{2}sin({θ+\frac{π}{4}})$.直线l与曲线C交于A,B两点,与y轴交于点 P.
(1)求曲线C的直角坐标方程;
(2)求线段AB的长度.

分析 (1)曲线C的极坐标方程为ρ=2$\sqrt{2}sin({θ+\frac{π}{4}})$,展开化为:ρ2=$2\sqrt{2}×\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ),利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出.
(2)把直线l的参数方程代入圆的方程可得:t2-t-1=0,利用|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.

解答 解:(1)曲线C的极坐标方程为ρ=2$\sqrt{2}sin({θ+\frac{π}{4}})$,展开化为:ρ2=$2\sqrt{2}×\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ),化为:x2+y2=2x+2y.
(2)把直线l的参数方程$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数)代入圆的方程可得:t2-t-1=0,
∴t1+t2=1,t1t2=-1.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{1-4×(-1)}$=$\sqrt{5}$.

点评 本题考查了数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆相交弦长问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图(1),正三角形ABC边长为2a,CD是AB边上的高,E,F分别为AC和BC边上的中点,现将△ABC沿CD翻折成直二面角A-DC-B(如图(2))
(1)请判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角B-AC-D的大小;
(3)求点C到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图⊙O是Rt△ABC的外接圆,E、F是AB,BC上的点,且A,E,F,C四点共圆,延长BC至D,使得AC•BF=AD•BE.
(1)证明:DA是⊙O的切线;
(2)若AF•AB=1:$\sqrt{2}$,试求过点A、E、F、C的圆的面积与⊙O的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=$\frac{π}{3}$,AB=1,CD=3,M为PC上一点,MC=2PM.
(Ⅰ)证明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于3?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心、椭圆的短半轴长为半径的⊙E与直线x-y+$\sqrt{6}$=0相切.
(1)求椭圆C的方程;
(2)过定点Q(1,0)斜率为k的直线与椭圆C交于M,N两点,若$\overrightarrow{OM}$$•\overrightarrow{ON}$=-2,求斜率k的值;
(3)若(2)中的直线MN与⊙E交于A,B两点,设点P在⊙E上.试探究使△PAB的面积为$\frac{\sqrt{21}}{12}$的点P共有几个?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A(-2,0),B(2,0),且△ABM的周长等于2$\sqrt{6}$+4,求动点M的轨迹G的方程:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点($\sqrt{2}$,$\frac{\sqrt{3}}{3}$).
(1)求椭圆的标准方程;
(2)若直线1经过点F($\sqrt{2}$,0)与直线x=$\frac{3\sqrt{2}}{2}$交于点M,与椭圆交于A,B两点,设P为直线x=$\sqrt{2}$上异于F的点,设PA,PB,PM的斜率分别为k1,k2,k3,求证:k1+k2=2k3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)经过点(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$).且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过椭圆C的左焦点F作两条互相垂直的动弦AB与CD,记由A,B,C,D四点构成的四边形的面积为S,求S的最大值和最小值.

查看答案和解析>>

同步练习册答案