13£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¹ýÓÒ½¹µãFÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²½ØµÃµÄÏÒ³¤Îª1£¬¹ýµã£¨m£¬0£©£¨0£¼m£¼a£©µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©¹ýµã P£¨$\frac{4}{m}$£¬0£©×÷´¹Ö±ÓÚxÖáµÄÖ±Ïßl£¬ÔÚÖ±ÏßlÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¿Èô´æÔÚ£¬ÊÔÇó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâÁйØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½â·½³Ì×é¿ÉµÃa£¬b£¬cµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪx=ty+m£¨t¡ÊR£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÆäÖÐx1¡Üx2£¬¼ÇABµÄÖеãΪM£¬ÁªÁ¢Ö±Ïßϵ·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬·ÖAB´¹Ö±ÓÚxÖáºÍAB²»´¹Ö±xÖáÌÖÂÛ£¬µ±AB´¹Ö±ÓÚxÖáʱ£¬Ö±½ÓÇóµÃQµãµÄ×ø±ê£»µ±AB²»´¹Ö±xÖáʱ£¬ÓÉ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬¶Ôm·ÖÀàÇó½â£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{\frac{2{b}^{2}}{a}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\\{c=\sqrt{3}}\end{array}\right.$£®
¡àËùÇóµÄÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪx=ty+m£¨t¡ÊR£©£¬
A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÆäÖÐx1¡Üx2£¬
¼ÇABµÄÖеãΪM£®ÓÉ$\left\{\begin{array}{l}{x=ty+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨4+t2£©y2+2tmy+m2-4=0£¬
Ôò¡÷=4t2m2-4£¨4+t2£©£¨m2-4£©=16£¨t2+4-m2£©£¾0£®
${y}_{1}+{y}_{2}=-\frac{2tm}{4+{t}^{2}}$£¬${y}_{1}{y}_{2}=\frac{{m}^{2}-4}{4+{t}^{2}}$£¬
|y1-y2|=$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{£¨-\frac{2tm}{4+{t}^{2}}£©^{2}-4\frac{{m}^{2}-4}{4+{t}^{2}}}$=$\frac{4\sqrt{{t}^{2}+4-{m}^{2}}}{4+{t}^{2}}$£¬
${x}_{1}+{x}_{2}=t£¨{y}_{1}+{y}_{2}£©+2m=\frac{8m}{4+{t}^{2}}$£¬
¡àµãMµÄºá×ø±ê${x}_{M}=\frac{{x}_{1}+{x}_{2}}{2}=\frac{4m}{4+{t}^{2}}$£¬×Ý×ø±ê${y}_{M}=\frac{{y}_{1}+{y}_{2}}{2}=-\frac{tm}{4+{t}^{2}}$£®
¼ÙÉèÔÚÖ±ÏßlÉÏ´æÔÚµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬
¼ÇµãQµÄ×ø±êΪ£¨$\frac{4}{m}£¬n$£©£¬Á¬½ÓQM£¬ÔòQM¡ÍAB£®
¢Ùµ±Ö±ÏßAB´¹Ö±ÓÚxÖáʱ£¬A£¨m£¬$-\frac{\sqrt{4-{m}^{2}}}{2}$£©£¬B£¨m£¬$\frac{\sqrt{4-{m}^{2}}}{2}$£©£¬
µãQµÄ×ø±êÖ»ÄÜÊÇ£¨$\frac{4}{m}£¬0$£©£¬
|AB|=$\sqrt{4-{m}^{2}}$£¬|QM|=$\frac{4}{m}-m$£¬
Èô¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Ôò$\frac{\sqrt{4-{m}^{2}}}{\frac{4}{m}-m}=\frac{2}{\sqrt{3}}$£¬½âµÃ${m}^{2}=\frac{16}{7}£¼4$£¬
¼´ÕâʱÔÚÖ±ÏßlÉÏ´æÔÚµãQ£¨$\sqrt{7}$£¬0£©£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ»
¢Úµ±Ö±ÏßAB²»´¹Ö±ÓÚxÖáʱ£¬${k}_{QM}=\frac{mn£¨4+{t}^{2}£©+t{m}^{2}}{4£¨4+{t}^{2}£©-4{m}^{2}}$£¬${k}_{AB}=\frac{1}{t}$£¬
${k}_{QM}•{k}_{AB}=\frac{mn£¨4+{t}^{2}£©+t{m}^{2}}{4£¨4+{t}^{2}£©}•\frac{1}{t}=-1$£¬¼´n=$\frac{3tm}{4+{t}^{2}}-\frac{4t}{m}$£¬
|QM|=$\frac{4\sqrt{{t}^{2}+1}£¨4+{t}^{2}-{m}^{2}£©}{£¨4+{t}^{2}£©m}$£¬|AB|=$\sqrt{1+{t}^{2}}|{y}_{1}-{y}_{2}|=\sqrt{1+{t}^{2}}\frac{4\sqrt{4+{t}^{2}-{m}^{2}}}{4+{t}^{2}}$£¬
Èô¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Ôò$\frac{|QM|}{|AB|}=\frac{\sqrt{3}}{2}$£¬µÃ${t}^{2}=\frac{7{m}^{2}}{4}-4$£¬n=$\frac{3tm}{4+{t}^{2}}-\frac{4t}{m}=t£¨\frac{3m}{4+{t}^{2}}-\frac{4}{m}£©=-\frac{16t}{7m}$£®
µ±0£¼m£¼$\frac{4\sqrt{7}}{7}$ʱ£¬t²»´æÔÚ£»
µ±$\frac{4\sqrt{7}}{7}$£¼m£¼2ʱ£¬t=$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬n=-$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£»
t=-$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬n=$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£®
×ÛÉÏ£¬µ±0£¼m£¼$\frac{4\sqrt{7}}{7}$ʱ£¬Ö±ÏßlÉϲ»´æÔÚµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ»
µ±m=$\frac{4\sqrt{7}}{7}$ʱ£¬Ö±ÏßlÉÏ´æÔÚÒ»¸öµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Q£¨$\sqrt{7}$£¬0£©£»
µ±$\frac{4\sqrt{7}}{7}$£¼m£¼2ÇÒt=$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬ÔÚÖ±ÏßlÉÏÓÐÇÒ½öÓÐÒ»¸öµãQ£¨$\frac{4}{m}$£¬-$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£©£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ»
µ±$\frac{4\sqrt{7}}{7}$£¼m£¼2ÇÒt=-$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬ÔÚÖ±ÏßlÉÏÓÐÇÒ½öÓÐÒ»¸öµãQ£¨$\frac{4}{m}$£¬$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£©£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éת»¯Ó뻯¹é˼Ïë¡¢ÊýÐνáºÏ˼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¼°Âß¼­ÍÆÀíÓëÔËËãÄÜÁ¦£¬½â´ð£¨2£©µÄ¹Ø¼üÊǰÑͼÐÎת»¯ÎªºÏÊʵÄλÖùØÏµ¡¢ÊýÁ¿¹ØÏµ£¬½ø¶ø×ª»¯Îª·½³Ì×éµÄÎÊÌ⣬ÔÙͨ¹ý´úÊýÊÖ¶ÎÀ´½â¾ö£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖª½Ç¦ÁÖÕ±ßÉÏÒ»µãP£¨-4£¬5£©£¬Ôò$\frac{cos£¨\frac{5¦Ð}{2}+¦Á£©sin£¨-¦Ð-¦Á£©}{sin£¨4¦Ð-¦Á£©sin£¨\frac{9¦Ð}{2}+¦Á£©}$µÄֵΪ-$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¨1£©£¬ÕýÈý½ÇÐÎABC±ß³¤Îª2a£¬CDÊÇAB±ßÉϵĸߣ¬E£¬F·Ö±ðΪACºÍBC±ßÉϵÄÖе㣬ÏÖ½«¡÷ABCÑØCD·­ÕÛ³ÉÖ±¶þÃæ½ÇA-DC-B£¨Èçͼ£¨2£©£©
£¨1£©ÇëÅжϷ­ÕÛºóÖ±ÏßABÓëÆ½ÃæDEFµÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Çó¶þÃæ½ÇB-AC-DµÄ´óС£»
£¨3£©ÇóµãCµ½Æ½ÃæDEFµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬¡ÏBAC=90¡ã£¬AB=AC=2£¬AA1=4£¬A1ÔÚµ×ÃæABCµÄÉäӰΪBCµÄÖеãE£¬DÊÇB1C1µÄÖе㣮
£¨1£©Ö¤Ã÷£ºA1D¡ÍÆ½ÃæA1BC£»
£¨2£©ÇóµãBµ½Æ½ÃæA1ACC1µÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÈýÀâ×¶S-ABC£¬Âú×ãSA¡ÍSB£¬SB¡ÍSC£¬SC¡ÍSA£¬ÇÒSA=SB=SC£¬Èô¸ÃÈýÀâ×¶Íâ½ÓÇòµÄ°ë¾¶Îª$\sqrt{3}$£¬QÊÇÍâ½ÓÇòÉÏÒ»¶¯µã£¬ÔòµãQµ½Æ½ÃæABCµÄ¾àÀëµÄ×î´óֵΪ$\frac{{4\sqrt{3}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÕý·½ÐÎABCDµÄ±ß³¤Îª4£¬CG¡ÍÆ½ÃæABCD£¬CG=2£¬E£¬F·Ö±ðÊÇAB£¬ADµÄÖе㣬ÔòµãCµ½Æ½ÃæGEFµÄ¾àÀëΪ$\frac{6\sqrt{11}}{11}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ¡ÑOÊÇRt¡÷ABCµÄÍâ½ÓÔ²£¬E¡¢FÊÇAB£¬BCÉϵĵ㣬ÇÒA£¬E£¬F£¬CËĵ㹲Բ£¬ÑÓ³¤BCÖÁD£¬Ê¹µÃAC•BF=AD•BE£®
£¨1£©Ö¤Ã÷£ºDAÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÈôAF•AB=1£º$\sqrt{2}$£¬ÊÔÇó¹ýµãA¡¢E¡¢F¡¢CµÄÔ²µÄÃæ»ýÓë¡ÑOµÄÃæ»ýÖ®±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬PD¡Íµ×ÃæABCD£¬AB¡ÎCD£¬¡ÏBAD=$\frac{¦Ð}{3}$£¬AB=1£¬CD=3£¬MΪPCÉÏÒ»µã£¬MC=2PM£®
£¨¢ñ£©Ö¤Ã÷£ºBM¡ÎÆ½ÃæPAD£»
£¨¢ò£©ÈôAD=2£¬PD=3£¬ÇóµãDµ½Æ½ÃæPBCµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬ÇÒ¾­¹ýµã£¨$\sqrt{2}$£¬$\frac{\sqrt{3}}{3}$£©£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±Ïß1¾­¹ýµãF£¨$\sqrt{2}$£¬0£©ÓëÖ±Ïßx=$\frac{3\sqrt{2}}{2}$½»ÓÚµãM£¬ÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬ÉèPΪֱÏßx=$\sqrt{2}$ÉÏÒìÓÚFµÄµã£¬ÉèPA£¬PB£¬PMµÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£¬ÇóÖ¤£ºk1+k2=2k3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸