·ÖÎö £¨1£©ÓÉÌâÒâÁйØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½â·½³Ì×é¿ÉµÃa£¬b£¬cµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪx=ty+m£¨t¡ÊR£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÆäÖÐx1¡Üx2£¬¼ÇABµÄÖеãΪM£¬ÁªÁ¢Ö±Ïßϵ·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬·ÖAB´¹Ö±ÓÚxÖáºÍAB²»´¹Ö±xÖáÌÖÂÛ£¬µ±AB´¹Ö±ÓÚxÖáʱ£¬Ö±½ÓÇóµÃQµãµÄ×ø±ê£»µ±AB²»´¹Ö±xÖáʱ£¬ÓÉ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬¶Ôm·ÖÀàÇó½â£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{\frac{2{b}^{2}}{a}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\\{c=\sqrt{3}}\end{array}\right.$£®
¡àËùÇóµÄÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»![]()
£¨2£©ÉèÖ±ÏßABµÄ·½³ÌΪx=ty+m£¨t¡ÊR£©£¬
A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÆäÖÐx1¡Üx2£¬
¼ÇABµÄÖеãΪM£®ÓÉ$\left\{\begin{array}{l}{x=ty+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨4+t2£©y2+2tmy+m2-4=0£¬
Ôò¡÷=4t2m2-4£¨4+t2£©£¨m2-4£©=16£¨t2+4-m2£©£¾0£®
${y}_{1}+{y}_{2}=-\frac{2tm}{4+{t}^{2}}$£¬${y}_{1}{y}_{2}=\frac{{m}^{2}-4}{4+{t}^{2}}$£¬
|y1-y2|=$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{£¨-\frac{2tm}{4+{t}^{2}}£©^{2}-4\frac{{m}^{2}-4}{4+{t}^{2}}}$=$\frac{4\sqrt{{t}^{2}+4-{m}^{2}}}{4+{t}^{2}}$£¬
${x}_{1}+{x}_{2}=t£¨{y}_{1}+{y}_{2}£©+2m=\frac{8m}{4+{t}^{2}}$£¬
¡àµãMµÄºá×ø±ê${x}_{M}=\frac{{x}_{1}+{x}_{2}}{2}=\frac{4m}{4+{t}^{2}}$£¬×Ý×ø±ê${y}_{M}=\frac{{y}_{1}+{y}_{2}}{2}=-\frac{tm}{4+{t}^{2}}$£®
¼ÙÉèÔÚÖ±ÏßlÉÏ´æÔÚµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬
¼ÇµãQµÄ×ø±êΪ£¨$\frac{4}{m}£¬n$£©£¬Á¬½ÓQM£¬ÔòQM¡ÍAB£®
¢Ùµ±Ö±ÏßAB´¹Ö±ÓÚxÖáʱ£¬A£¨m£¬$-\frac{\sqrt{4-{m}^{2}}}{2}$£©£¬B£¨m£¬$\frac{\sqrt{4-{m}^{2}}}{2}$£©£¬
µãQµÄ×ø±êÖ»ÄÜÊÇ£¨$\frac{4}{m}£¬0$£©£¬
|AB|=$\sqrt{4-{m}^{2}}$£¬|QM|=$\frac{4}{m}-m$£¬
Èô¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Ôò$\frac{\sqrt{4-{m}^{2}}}{\frac{4}{m}-m}=\frac{2}{\sqrt{3}}$£¬½âµÃ${m}^{2}=\frac{16}{7}£¼4$£¬
¼´ÕâʱÔÚÖ±ÏßlÉÏ´æÔÚµãQ£¨$\sqrt{7}$£¬0£©£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ»
¢Úµ±Ö±ÏßAB²»´¹Ö±ÓÚxÖáʱ£¬${k}_{QM}=\frac{mn£¨4+{t}^{2}£©+t{m}^{2}}{4£¨4+{t}^{2}£©-4{m}^{2}}$£¬${k}_{AB}=\frac{1}{t}$£¬
${k}_{QM}•{k}_{AB}=\frac{mn£¨4+{t}^{2}£©+t{m}^{2}}{4£¨4+{t}^{2}£©}•\frac{1}{t}=-1$£¬¼´n=$\frac{3tm}{4+{t}^{2}}-\frac{4t}{m}$£¬
|QM|=$\frac{4\sqrt{{t}^{2}+1}£¨4+{t}^{2}-{m}^{2}£©}{£¨4+{t}^{2}£©m}$£¬|AB|=$\sqrt{1+{t}^{2}}|{y}_{1}-{y}_{2}|=\sqrt{1+{t}^{2}}\frac{4\sqrt{4+{t}^{2}-{m}^{2}}}{4+{t}^{2}}$£¬
Èô¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Ôò$\frac{|QM|}{|AB|}=\frac{\sqrt{3}}{2}$£¬µÃ${t}^{2}=\frac{7{m}^{2}}{4}-4$£¬n=$\frac{3tm}{4+{t}^{2}}-\frac{4t}{m}=t£¨\frac{3m}{4+{t}^{2}}-\frac{4}{m}£©=-\frac{16t}{7m}$£®
µ±0£¼m£¼$\frac{4\sqrt{7}}{7}$ʱ£¬t²»´æÔÚ£»
µ±$\frac{4\sqrt{7}}{7}$£¼m£¼2ʱ£¬t=$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬n=-$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£»
t=-$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬n=$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£®
×ÛÉÏ£¬µ±0£¼m£¼$\frac{4\sqrt{7}}{7}$ʱ£¬Ö±ÏßlÉϲ»´æÔÚµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ»
µ±m=$\frac{4\sqrt{7}}{7}$ʱ£¬Ö±ÏßlÉÏ´æÔÚÒ»¸öµãQ£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ¬Q£¨$\sqrt{7}$£¬0£©£»
µ±$\frac{4\sqrt{7}}{7}$£¼m£¼2ÇÒt=$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬ÔÚÖ±ÏßlÉÏÓÐÇÒ½öÓÐÒ»¸öµãQ£¨$\frac{4}{m}$£¬-$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£©£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ»
µ±$\frac{4\sqrt{7}}{7}$£¼m£¼2ÇÒt=-$\sqrt{\frac{7{m}^{2}}{4}-4}$ʱ£¬ÔÚÖ±ÏßlÉÏÓÐÇÒ½öÓÐÒ»¸öµãQ£¨$\frac{4}{m}$£¬$\frac{8\sqrt{7{m}^{2}-16}}{7m}$£©£¬Ê¹µÃ¡÷ABQΪµÈ±ßÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éת»¯Ó뻯¹é˼Ïë¡¢ÊýÐνáºÏ˼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¼°Âß¼ÍÆÀíÓëÔËËãÄÜÁ¦£¬½â´ð£¨2£©µÄ¹Ø¼üÊǰÑͼÐÎת»¯ÎªºÏÊʵÄλÖùØÏµ¡¢ÊýÁ¿¹ØÏµ£¬½ø¶ø×ª»¯Îª·½³Ì×éµÄÎÊÌ⣬ÔÙͨ¹ý´úÊýÊÖ¶ÎÀ´½â¾ö£¬ÊÇѹÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com