精英家教网 > 高中数学 > 题目详情
18.已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F分别是AB,AD的中点,则点C到平面GEF的距离为$\frac{6\sqrt{11}}{11}$.

分析 设点C到平面GEF的距离为h,由题意利用等体积法可得 VC-GEF=VG-CEF,由此求得h的值.

解答 解:设点C到平面GEF的距离为h,由题意可得CE=CF=$\sqrt{{BC}^{2}{+BE}^{2}}$=2$\sqrt{5}$,
∴GE=GF=$\sqrt{{CG}^{2}{+CE}^{2}}$=$\sqrt{{2}^{2}+{(2}^{2}{+4}^{2})}$=2$\sqrt{6}$.
取EF的中点为M,则CM=$\frac{3}{4}$AC=$\frac{3}{4}$•4$\sqrt{2}$=3$\sqrt{2}$,∴GM=$\sqrt{{CG}^{2}{+CM}^{2}}$=$\sqrt{{2}^{2}+(3\sqrt{2})^{2}}$=$\sqrt{4+18}$=$\sqrt{22}$.
∵VC-GEF=VG-CEF,∴$\frac{1}{3}$•($\frac{1}{2}$•EF•GM)•h=$\frac{1}{3}$•($\frac{1}{2}$•EF•CM)•CG,
即 GM•h=CM•CG,即 $\sqrt{22}$•h=3$\sqrt{2}$•2,求得 h=$\frac{6\sqrt{11}}{11}$,
即点C到平面GEF的距离为$\frac{6\sqrt{11}}{11}$,
故答案为:$\frac{6\sqrt{11}}{11}$.

点评 本题主要考查空间距离的求法,用等体积法求点到平面的距离,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列各等式中成立的是(  )
①lg$\frac{1}{100}$=-2;②log3$\sqrt{{3}^{3}}$=$\frac{3}{2}$;③ln$\frac{1}{e}$=-1;④ln0=1;⑤logaa=1(a∈R)
A.①②③B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在四棱锥P-ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:BE⊥PA;
(Ⅱ)若AD=2BC=2AB=4,求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线a上的所有点到两条直线m、n的距离都相等,则称直线a为“m、n的等距线”.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱中点,M、N分别为EH、FG中点,则在直线MN,EG,FH,B1D中,是“A1D1、AB的等距线”的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过右焦点F且垂直于x轴的直线被椭圆截得的弦长为1,过点(m,0)(0<m<a)的直线与椭圆交于A,B两点.
(1)求椭圆的标准方程;
(2)过点 P($\frac{4}{m}$,0)作垂直于x轴的直线l,在直线l上是否存在点Q,使得△ABQ为等边三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l⊥平面α,垂足是点P,正四面体OABC的棱长为2,点O在平面α上运动,点A在直线l上运动,则点P到直线BC的距离的最大值为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若三条直线ax+y+3=0,x+y+2=0和2x-y+1=0相交于一点,则行列式$|\begin{array}{l}{a}&{1}\\{1}&{1}\end{array}|$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在棱长为2的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=$2\sqrt{5}$的点P的个数为12;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点F1(-$\sqrt{13}$,0)和点F2($\sqrt{13}$,0)是椭圆E的两个焦点,且点A(0,6)在椭圆E上.
(1)求椭圆E的方程;
(2)设P是椭圆E上的一点,若|PF2|=4,求以线段PF1为直径的圆的面积.

查看答案和解析>>

同步练习册答案