精英家教网 > 高中数学 > 题目详情
9.如图所示,在四棱锥P-ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:BE⊥PA;
(Ⅱ)若AD=2BC=2AB=4,求点D到平面PAC的距离.

分析 (Ⅰ)取PA的中点F,连结BF、EF,推导出AD⊥平面PAB,从而AD⊥PA,PA⊥EF,再由等边三角形性质得BF⊥PA,由此能证明BE⊥PA.
(Ⅱ)取AB的中点H,则由平面PAB⊥平面ABCD知PH⊥平面ABCD,设点D到平面PAC的距离为d,由VP-ACD=VD-PAC,能求出结果.

解答 证明:(Ⅰ)取PA的中点F,连结BF、EF,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊥AB,
∴AD⊥平面PAB,
∵PA?平面PAB,∴AD⊥PA,
∵EF∥AD,∴PA⊥EF,
∵△PAB为等边三角形,∴BF⊥PA,
又BF∩EF=F,∴PA⊥平面BEF,
又BE?平面BEF,∴BE⊥PA.
(Ⅱ)取AB的中点H,则由平面PAB⊥平面ABCD知PH⊥平面ABCD,
又PH=$\frac{\sqrt{3}}{2}×2$=$\sqrt{3}$,${S}_{△ACD}=\frac{1}{2}×4×2$=4,
∴${V}_{P-ACD}=\frac{1}{3}{S}_{△ACD}•PH=\frac{4\sqrt{3}}{3}$,
由(Ⅰ)知PA⊥平面BCEF,FC?平面BCEF,∴PA⊥FC,
又FC=BE=$\sqrt{4+3}$=$\sqrt{7}$,∴${S}_{△PAC}=\frac{1}{2}×\sqrt{7}×2=\sqrt{7}$,
设点D到平面PAC的距离为d,
由VP-ACD=VD-PAC,得$\frac{4\sqrt{3}}{3}=\frac{1}{3}×\sqrt{7}×d$,
解得d=$\frac{4\sqrt{21}}{7}$.

点评 本题考查线线垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.一个袋中装有10个大小相同的球,其中6个白球,4个红球.甲、乙两个人依次按不放回的方式,从袋中各抽出1个球.求下列事件的概率:
(1)甲抽到白球、乙抽到红球;
(2)甲、乙两人至少有一人抽到白球.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-a}$是奇函数,求实数a满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三角函数y=sin($\frac{π}{6}$-2x)+cos2x的振幅和最小正周期分别为(  )
A.$\sqrt{3}$,$\frac{π}{2}$B.$\sqrt{3}$,πC.$\sqrt{2}$,$\frac{π}{2}$D.$\sqrt{2}$,π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图(1),正三角形ABC边长为2a,CD是AB边上的高,E,F分别为AC和BC边上的中点,现将△ABC沿CD翻折成直二面角A-DC-B(如图(2))
(1)请判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角B-AC-D的大小;
(3)求点C到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°.
(1)求证:平面CA1B⊥平面A1ABB1
(2)求点C1到平面A1CB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=4,A1在底面ABC的射影为BC的中点E,D是B1C1的中点.
(1)证明:A1D⊥平面A1BC;
(2)求点B到平面A1ACC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F分别是AB,AD的中点,则点C到平面GEF的距离为$\frac{6\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心、椭圆的短半轴长为半径的⊙E与直线x-y+$\sqrt{6}$=0相切.
(1)求椭圆C的方程;
(2)过定点Q(1,0)斜率为k的直线与椭圆C交于M,N两点,若$\overrightarrow{OM}$$•\overrightarrow{ON}$=-2,求斜率k的值;
(3)若(2)中的直线MN与⊙E交于A,B两点,设点P在⊙E上.试探究使△PAB的面积为$\frac{\sqrt{21}}{12}$的点P共有几个?证明你的结论.

查看答案和解析>>

同步练习册答案