精英家教网 > 高中数学 > 题目详情
17.已知过原点的直线l1与直线l2:x+3y+1=0垂直,圆C的方程为x2+y2-2ax-2ay=1-2a2(a>0),若直线l1与圆C交于M,N两点,则当△CMN的面积最大时,圆心C的坐标为(  )
A.$({\frac{{\sqrt{5}}}{2},\frac{{\sqrt{5}}}{2}})$B.$({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}})$C.$({\frac{1}{2},\frac{1}{2}})$D.(1,1)

分析 当△CMN的面积最大时,CM⊥CN,圆心C到直线l1的距离为$\frac{|3a-a|}{\sqrt{9+1}}$=1×$\frac{\sqrt{2}}{2}$,即可求出圆心C的坐标.

解答 解:由题意,直线l1的方程为3x-y=0,圆C的方程为x2+y2-2ax-2ay=1-2a2的圆心坐标为(a,a),半径为1,
当△CMN的面积最大时,CM⊥CN,圆心C到直线l1的距离为$\frac{|3a-a|}{\sqrt{9+1}}$=1×$\frac{\sqrt{2}}{2}$,
∵a>0,
∴a=$\frac{\sqrt{5}}{2}$,
∴圆心C的坐标为($\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$),
故选:A.

点评 本题考查直线与直线、直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知α∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$.
(1)求sin($\frac{π}{4}$+α)的值;      
(2)求cos($\frac{π}{6}$-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出一个命题P:若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个小于零.在用反证法证明P时,应该假设(  )
A.a,b,c,d中至少有一个正数B.a,b,c,d全为正数
C.a,b,c,d全都大于或等于0D.a,b,c,d中至多有一个负数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列表示旅客搭乘动车的流程中,正确的是(  )
A.买票→候车厅候车→上车→候车检票口检票
B.候车厅候车→买票→上车→候车检票口检票
C.买票→候车厅候车→候车检票口检票→上车
D.候车厅候车→上车→候车检票口检票→买票

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用反证法证明:在△ABC中,若∠C是直角,则∠B是锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某公司为了解该公司800名员工参加运动的情况,对公司员工半年来的运动时间进行统计得到如图所示的频率分布直方图,则运动时间超过100小时的员工有(  )
A.360人B.480人C.600人D.240人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC中,角A,B,C所对的边分别是a,b,c,$sinA=\sqrt{3}sinC$,$b=\sqrt{7}$.
(Ⅰ)若$B=\frac{π}{6}$,证明:sinB=sinC;
(Ⅱ)若B为钝角,$cos2B=\frac{1}{2}$,求AC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=alnx-\frac{1}{2}{x^2}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数g(x)=f(x)+4x存在极小值点x0,且$g({x_0})-\frac{1}{2}x_0^2+2a>0$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案