精英家教网 > 高中数学 > 题目详情
9.已知△ABC中,角A,B,C所对的边分别是a,b,c,$sinA=\sqrt{3}sinC$,$b=\sqrt{7}$.
(Ⅰ)若$B=\frac{π}{6}$,证明:sinB=sinC;
(Ⅱ)若B为钝角,$cos2B=\frac{1}{2}$,求AC边上的高.

分析 (Ⅰ)利用正弦定理可知$a=\sqrt{3}c$.余弦定理求出c,即可证明;
(Ⅱ)先求出B,再利用余弦定理和正弦定理求出c,a,sinC,即可求出AC边上的高.

解答 解:(Ⅰ)依题意,由正弦定理可知$a=\sqrt{3}c$.
由余弦定理,得$7={({\sqrt{3}c})^2}+{c^2}$$-2({\sqrt{3}c})•c•cosB$,
故c2=7,$c=\sqrt{7}=b$,故sinB=sinC.
(Ⅱ)因为$cos2B=\frac{1}{2}$,故$2B=\frac{5}{3}π$,故$B=\frac{5}{6}π$.
由余弦定理可得$7={({\sqrt{3}c})^2}+{c^2}-$$2({\sqrt{3}c})•c•cosB$,解得c=1,$a=\sqrt{3}$.
由正弦定理可得$\frac{1}{sinC}=\frac{{\sqrt{7}}}{{sin\frac{5π}{6}}}$,解得$sinC=\frac{{\sqrt{7}}}{14}$,
故$h=\sqrt{3}sinC=\frac{{\sqrt{21}}}{14}$.

点评 本题考查正弦定理和余弦定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某校高二(1)班每周都会选出两位“迟到之星”,期中考试之前一周“迟到之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是迟到之星”,小谭说:“小赵说的对”.已知这四人中有且只有两人的说法是正确的,则“迟到之星”是(  )
A.小赵、小谭B.小马、小宋C.小马、小谭D.小赵、小宋

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数:
(1)cos(-60°)+cos60°+cos180°;     
(2)cos(-27°)+cos107°+cos227°;
(3)cos30°+cos150°+cos270°;     
 (4)cos40°+cos160°+cos280°.
(Ⅰ)试从上述四个式子中选择一个式子,进行化简求值;
(Ⅱ)根据(Ⅰ)的计算结果,请你写出一个以题设的四个式子为特例的一般性命题,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知过原点的直线l1与直线l2:x+3y+1=0垂直,圆C的方程为x2+y2-2ax-2ay=1-2a2(a>0),若直线l1与圆C交于M,N两点,则当△CMN的面积最大时,圆心C的坐标为(  )
A.$({\frac{{\sqrt{5}}}{2},\frac{{\sqrt{5}}}{2}})$B.$({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}})$C.$({\frac{1}{2},\frac{1}{2}})$D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知单位向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则$|{\overrightarrow a-3\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+3|+|x-1|的最小值为m.
(Ⅰ)求m的值以及此时的x的取值范围;
(Ⅱ)若实数p,q,r满足p2+2q2+r2=m,证明:q(p+r)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}{x^3}\\-{x^3}\end{array}\right.\begin{array}{l}x≥0,\\ x<0,\end{array}$,若f(3a-1)≥8f(a),则实数a的取值范围为$({-∞,\frac{1}{5}}]∪[{1,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x),如果存在函数g(x)=ax+b,(a,b为常数),使得f(x)≥g(x)
对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数.给出如下命题:
①函数g(x)=-2是函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\ 1,x≤0\end{array}\right.$的一个承托函数;
②函数g(x)=x-1是函数f(x)=x+sinx的一个承托函数;
③若函数g(x)=ax是函数f(x)=ex的一个承托函数,则a的取值范围是[0,e];
④值域是R的函数f(x)不存在承托函数.
其中正确的命题的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\sqrt{x+1}$+lg(6-3x)的定义域为(  )
A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2]

查看答案和解析>>

同步练习册答案