精英家教网 > 高中数学 > 题目详情
2.下列函数中,值域是(0,+∞)的是(  )
A.y=2-x(x<0)B.y=x2+2x+1C.y=$\sqrt{{x}^{2}-4x+1}$D.$\frac{1}{\sqrt{x}}$

分析 根据不等式的性质,可以求出y=2-x(x<0)的值域,对于二次函数进行配方求值域,根据被开方数需大于等于0求值域,以及根据$\sqrt{x}$在分母上时,便有$\sqrt{x}>0$求值域,这样把这几个函数的值域都求出来,选出值域为(0.+∞)的即可.

解答 解:A.x<0;
∴-x>0;
∴2-x>2;
即y>2,值域不是(0,+∞);
B.y=x2+2x+1=(x+1)2≥0;
即y≥0,值域不为(0,+∞);
C.x2-4x+1=(x-2)2-3≥0;
∴y≥0,值域不为(0,+∞);
D.$\sqrt{x}>0$;
∴$\frac{1}{\sqrt{x}}>0$;
即y>0;
∴该函数的值域为:(0,+∞).
故选D.

点评 考查函数值域的概念及求法,根据不等式的性质求函数值域,配方法求二次函数值域,被开方数大于等于0,并且要熟悉反比例函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题:
(1){x|x2+4x-5=0}表示二次方程x2+4x-5=0的解集;
(2){x|x2+4x-5>0}表示二次不等式x2+4x-5>0的解集;
(3){x|y=x2+4x-5}表示二次函数y=x2+4x-5自变量组成的集合;
(4){x|x=t2+4t-5}表示二次函数x=t2+4t-5自变量组成的集合;
(5){(x,y)|$\left\{\begin{array}{l}{x+2y=1}\\{2x-y=-3}\end{array}\right.$}表示方程组$\left\{\begin{array}{l}{x+2y=1}\\{2x-y=-3}\end{array}\right.$的解集{-1,1}.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合P={x|x2-x-2>0},Q={x|x2+4x+a<0},若P?Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A={x|1<x<2015},B={x|x≤a},若A?B,则实数a的取值范围为(  )
A.a≥2015B.a>2015C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\frac{3\sqrt{2}}{2}$,则$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$=(  )
A.$\frac{32}{3}$B.-$\frac{8}{3}$C.$\frac{32}{3}$或-$\frac{8}{3}$D.-$\frac{32}{3}$或$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=x-x2的值域是(-∞,$\frac{1}{4}$];函数y=x-x2(-1≤x≤1)的值域是[-2,$\frac{1}{4}$];函数y=$\frac{1}{x-{x}^{2}}$的值域是(-∞,0)∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<2}\\{6-x,x≥2}\end{array}\right.$
(1)求f(-3),f(3);
(2)画出函数f(x)的图象,并写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.实数x,y,z满足x2-2x+y=z-1,则y,z之间的大小关系为y≤z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x2-4tx+3在区间[-3,2]上单调,且函数f(x)的最小值为-13,求实数t的值.

查看答案和解析>>

同步练习册答案