分析 (1)若函数f(x)有最大值$\frac{17}{8}$,则$\left\{\begin{array}{l}a<0\\ \frac{-4{a}^{2}-1}{4a}=\frac{17}{8}\end{array}\right.$,解得实数a的值;
(2)当a<0时,解不等式f(x)>1可化为:$(x-1)(x+\frac{a+1}{a})<0$,讨论$-\frac{a+1}{a}$与1的大小,可得答案.
解答 解:(1)若函数f(x)有最大值$\frac{17}{8}$,
则$\left\{\begin{array}{l}a<0\\ \frac{{-4{a^2}-1}}{4a}=\frac{17}{8}\end{array}\right.$
解得:a=-2或a=-$\frac{1}{8}$,
(2)当a<0时,
ax2+x-a>1$⇒a{x^{2}}+x-a-{1}>0⇒a(x-1)(x+\frac{a+1}{a})>0$$⇒(x-1)(x+\frac{a+1}{a})<0$
当$1>-\frac{a+1}{a}$,即a<$\frac{1}{2}$时,$x∈(-\frac{a+1}{a},1)$;
当$1<-\frac{a+1}{a}$,即$-\frac{1}{2}<a<0$时,$x∈(1,-\frac{a+1}{a})$;
当$1=-\frac{a+1}{a}$,即$a=-\frac{1}{2}$时,x∈∅.
点评 本题考查的知识点是二次函数的图象和性质,二次不等式的解法,难度不大,熟练掌握二次函数的图象和性质是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=x,g(x)={(\sqrt{x})^2}$ | B. | f(x)=(x-1)0,g(x)=1 | ||
| C. | $f(x)=|x-1|,g(x)=\sqrt{{{(x-1)}^2}}$ | D. | $f(x)=\sqrt{x-1}\sqrt{x+1},g(x)=\sqrt{{x^2}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$ |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{5}$) | B. | ($\sqrt{5}$,$\sqrt{13}$) | C. | ($\sqrt{13}$,5) | D. | ($\sqrt{5}$,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{18}{5}$ | B. | -3 | C. | 0 | D. | 不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com