精英家教网 > 高中数学 > 题目详情
11.若xlog52≥-1,则函数f(x)=4x-2x+1-3的最小值为(  )
A.-4B.-3C.-1D.0

分析 由条件求得x≥-log25,令t=2x(t≥$\frac{1}{5}$),即有y=t2-2t-3,由二次函数的最值求法,即可得到最小值.

解答 解:xlog52≥-1,即为x≥-log25,
2x≥$\frac{1}{5}$,令t=2x(t≥$\frac{1}{5}$),
即有y=t2-2t-3=(t-1)2-4,
当t=1≥$\frac{1}{5}$,即x=0时,取得最小值-4.
故选:A.

点评 本题考查可化为二次函数的最值的求法,注意运用换元法和指数函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设随机变量ξ的分布列为P(ξ=k)=$\frac{1}{5}$(k=1,2,3,4,5),求:(1)E(ξ+2)2;(2)D(2ξ-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点P(x,y)满足$\left\{\begin{array}{l}{x+y≤7}\\{y≥x}\\{x≥2}\end{array}\right.$,过点P的直线与圆x2+y2=50相交于A,B两点,则|AB|的最小值为2$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={a,b,c,d,e},B={b,e,f},则A∩B的子集个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,且函数f(x+$\frac{π}{12}$)是偶函数,下列判断正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点($\frac{7π}{12}$,0)d对称
C.函数f(x)的图象关于直线x=-$\frac{7π}{12}$对称
D.函数f(x)在[$\frac{3π}{4}$,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果向量$\overrightarrow a=(1,\;2)$,$\overrightarrow b=(4,\;3)$,那么等于$\overrightarrow a-2\overrightarrow b$(  )
A.(9,8)B.(-7,-4)C.(7,4)D.(-9,-8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是(  )
A.{1,-1}B.{3,-3}C.{1,-1,3,-3}D.{5,-5,3,-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.定义R在上的单调函数f(x)满足f(3)=log23,且对任意x,y∈R,都有f(x+y)=f(x)+f(y),
(1)求f(0);                
(2)求证:f(x)为奇函数;
(3)若f(k•3x)+f(3x-9x)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正项数列{an}满足an2=2Sn-an,Sn为{an}的前n项和.
(1)求an
(2)若bn=$\frac{1}{{S}_{n}}$,数列{bn}前n项和Tn,若x∈[-1,1],不等式m2-2mx+2>Tn对n∈N*恒成立,求m的范围.

查看答案和解析>>

同步练习册答案