精英家教网 > 高中数学 > 题目详情
9.设等差数列{an}的前n项和为Sn,若S8>S9>S7,则满足Sn•Sn+1<0的正整数n的值为16.

分析 由题意可得a9<0,a8>0,a9+a8>0,由等差数列的前n项和公式、性质可得S17<0,S16>0,S15>0,可得满足题意的n值.

解答 解:由题意可得S8>S9>S7
∴a8=S8-S7>0,a9=S9-S8<0,且a9+a8=S9-S7>0,
∴S17═$\frac{17({a}_{1}+{a}_{17})}{2}$=$\frac{17×2{a}_{9}}{2}$=17a9<0,
S16═$\frac{16({a}_{1}+{a}_{16})}{2}$=8(a1+a16)=8(a8+a9)>0,
同理可得S15=15a8>0,
∴满足Sn•Sn+1<0的正整数n=16,
故答案为:16.

点评 本题考查了等差数列的前n项和公式,等差数列的性质,以及整体思想的灵活应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为(  )
A.$\frac{a}{a+1}$B.-$\frac{a}{a+1}$C.$\frac{a+1}{a}$D.-$\frac{a+1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}-{(x-1)^2},({x<1})\\(3-a)x+4a,({x≥1})\end{array}$为增函数,则实数a的取值范围是(  )
A.-1≤a<3B.a<3C.a>3或a≤-1D.-1<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.有以下几个命题:
①直线l恒过定点(3,1);        
②圆C被y轴截得的弦长为 4$\sqrt{6}$;
③直线 l与圆C恒相交;        
④直线 l被圆C截得最短弦长时,l方程为2x-y-5=0,
其中正确命题的是(  )
A.②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某单位为了了解用电量y(度)与气温X(0C)之间的关系,随机统计了某4天的用电量与当天气温,并作了如下的对照表:由表中数据,得回归直线方程$\hat y$=$\hat bx$+$\hat a$,若$\hat b$=-2,则$\hat a$=(  )
气温X(0C)181310-1
用电量y24343864
A.60B.58C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,若f(x)-g(x)=21-X,则g(-1)=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,则该四棱锥的外接球的半径为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)讨论函数y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m$≤{∫}_{1}^{2}(4-3{x}^{2})dx$”是“函数f(x)=2${\;}^{x}+\frac{1}{{2}^{x+m}}$的值不小于4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案