分析 (1)根据对数函数的定义域即可证明m>3;
(2)求出函数的单调性结合对数函数的运算性质,得到关于a的不等式组,解出即可.
解答 解:(1)证明:∵$\frac{x-3}{x+3}$>0,∴x>3或x<-3,
由函数的定义域是(m,n),
故n>m>3或m<n<-3,
而值域是loga[a(n-1)]<f(x)<loga[a(m-1)],
由对数函数的性质得m>1,n>1,
故m>3;
(2)设g(x)=$\frac{x-3}{x+3}$=1-$\frac{6}{x+3}$,
∴g(x)在区间(3,+∞)递增,又∵0<a<1,
即f(x)是单调递减函数,
故$\left\{\begin{array}{l}{{log}_{a}\frac{n-3}{n+3}{=log}_{a}[a(n-1)]}\\{{log}_{a}\frac{m-3}{m+3}{=log}_{a}[a(m-1)]}\end{array}\right.$,
故loga$\frac{x-3}{x+3}$=loga[a(x-1)],
故$\frac{x-3}{x+3}$=a(x-1),
故ax2+(2a-1)x-3(a-1)=0有2个大于3的实数根,
∴$\left\{\begin{array}{l}{△>0}\\{a{•3}^{2}+(2a-1)•3-3(a-1)>0}\\{-\frac{2a-1}{2a}>3}\end{array}\right.$,
解得:0<a<$\frac{2-\sqrt{3}}{4}$.
点评 本题主要考查复合函数单调性的性质的应用,结合对数函数的性质是解决本题的关键.
科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(理)试卷(解析版) 题型:解答题
如图,在四棱锥
中,底面
是边长为1的正方形,
,
,且
,
为
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | πr2 | B. | πh2 | C. | π(r-h)2 | D. | π(r2-h2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{π}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| X | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| P | 0.02 | 0.04 | 0.06 | 0.09 | 0.28 | 0.29 | 0.22 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com