精英家教网 > 高中数学 > 题目详情
6.已知直线l1:y=k(x+1)+2,(k∈R)过定点P.
(1)求定点P的坐标;
(2)若直线l1与直线l2:3x-(k-2)y+5=0平行,求k的值并求此时两直线间的距离.

分析 (1)直线l1:y=k(x+1)+2,可得$\left\{\begin{array}{l}{x+1=0}\\{y=2}\end{array}\right.$,即可求定点P的坐标;
(2)利用两条直线平行的条件,求出k,利用两直线间的距离公式可得结论.

解答 解:(1)直线l1:y=k(x+1)+2,可得$\left\{\begin{array}{l}{x+1=0}\\{y=2}\end{array}\right.$,∴x=-1,y=2,∴P(-1,2);
(2)直线l1与直线l2:3x-(k-2)y+5=0平行,则$\frac{3}{k-2}$=k,解得k=-1或3,
k=3时,两条直线重合;
k=-1时,直线l1:3x+3y-3=0,直线l2:3x+3y+5=0,两直线间的距离d=$\frac{|5+3|}{\sqrt{9+9}}$=$\frac{4\sqrt{2}}{3}$.

点评 本题考查直线过定点,考查两条直线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知α为第四象限角,sinα+cosα=$\frac{1}{5}$,则tanα的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z满足z(4-i)=5+3i(i为虚数单位),则复数z的共轭复数为(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:x+2y-1=0与直线l2:mx-y=0垂直,则m=(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,四面体ABCD中,E,F分别是AC,BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成角的度数为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x∈R,都有x2≥0”的否定为(  )
A.不存在x0∈R,使得$x_0^2<0$B.?x∈R,都有x2<0
C.?x0∈R,使得$x_0^2≥0$D.?x0∈R,使得$x_0^2<0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题:
①“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0”,则a2+b2≠0”;
②已知曲线C的方程是kx2+(4-k)y2=1(k∈R),曲线C是椭圆的充要条件是0<k<4;
③“$m=\frac{1}{2}$”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
④已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线经过点(1,2),则该双曲线的离心率的值为$\sqrt{5}$.
上述命题中真命题的序号为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$+8πB.$\frac{16}{3}$+8πC.$\frac{8}{3}$+16πD.$\frac{16}{3}$+16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知边长为a的正方形ABCD外有一点P,且PA⊥平面ABCD,PA=a,求二面角B-PA-C和P-BC-A的大小.

查看答案和解析>>

同步练习册答案