分析 (1)由于sinx=2cosx,可得tanx=2.利用“弦化切”可得$\frac{si{n}^{2}x-2sinxcosx+3co{s}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{ta{n}^{2}x-2tanx+3}{ta{n}^{2}x+1}$
解答 解:∵sinx=2cosx,
∴tanx=2.
那么sin2x-2sinxcosx+3cos2x=$\frac{si{n}^{2}x-2sinxcosx+3co{s}^{2}x}{si{n}^{2}x+co{s}^{2}x}$
=$\frac{ta{n}^{2}x-2tanx+3}{ta{n}^{2}x+1}$=$\frac{4-4+3}{4+1}=\frac{3}{5}$.
故答案为$\frac{3}{5}$
点评 本题考查了“弦化切”及同角三角函数基本关系式,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$斗 | B. | $\frac{4}{5}$斗 | C. | 1斗 | D. | $\frac{5}{4}$斗 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (4,+∞) | C. | [2,4] | D. | (2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1]∪[3,+∞) | B. | (-∞,1)∪(3,+∞) | C. | [1,3] | D. | (1,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com