精英家教网 > 高中数学 > 题目详情
17.在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆交CA,CB于点D,E,点P是图中阴影区域内的一点(不包含边界).若$\overrightarrow{CP}$=x$\overrightarrow{CD}$+y$\overrightarrow{CE}$,则x+y的值可以是(  )
A.1B.2C.4D.8

分析 求出内切圆半径,根据三点共线原理得出x+y分别对于1,2,4,8时P点的轨迹,从而判断出答案.

解答 解:设圆心为O,半径为r,则OD⊥AC,OE⊥BC,∴3-r+4-r=5,解得r=1.
连结DE,则当x+y=1时,P在线段DE上,排除A;
在AC上取点M,在CB上取点N,使得CM=2CD,CN=2CE,连结MN,∴$\overrightarrow{CP}$=$\frac{x}{2}$$\overrightarrow{CM}$+$\frac{y}{2}$$\overrightarrow{CN}$.
则点P在线段MN上时,$\frac{x}{2}$+$\frac{y}{2}$=1,故x+y=2.
同理,当x+y=4或x+y=8时,P点不在三角形内部.排除C,D.
故选:B.

点评 本题考查了平面向量的基本定理,三点共线原理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sin(3π+α)=lg$\frac{1}{\root{3}{10}}$,求$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某班50名学生在一次百米测试中,成绩全部在13秒与18秒之间,大于或等于14秒的为良好,由测试结果得到的频率分布直方图如图,则该班百米测试中成绩良好的人数有人47.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)={log_9}({9^x}+1)+kx(k∈R)$是偶函数.
(1)求k的值;
(2)若函数y=f(x)的图象与直线$y=\frac{1}{2}x+b$没有交点,求b的取值范围.
(3)设$h(x)={log_9}(a•{3^x}-\frac{4}{3}a)$,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若对任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,则a的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某中学的高二年级有男同学45名,女同学30名,老师按照分层抽样的方法组建了一个5人的课外兴趣小组;
(Ⅰ)求课外兴趣小组中男、女同学的人数
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定随机选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果f(x)在[-5,5]上是奇函数,且f(3)<f(1),则(  )
A.f(-1)<f(-3)B.f(0)>f(1)C.f(-1)<f(1)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.化简:$\overrightarrow{AB}$+$\overrightarrow{OA}$-$\overrightarrow{OB}$=(  )
A.$\overrightarrow{0}$B.$\overrightarrow{BA}$C.2$\overrightarrow{AB}$D.-2$\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列关于函数f(x)=sinx(cosx+sinx)的说法中,不正确的是(  )
A.f(x)的最小正周期为π
B.f(x)的图象关于直线x=-$\frac{π}{8}$对称
C.f(x)的图象关于点($\frac{π}{8}$,0)对称
D.f(x)的图象向右平移$\frac{π}{8}$后得到一个偶函数的图象

查看答案和解析>>

同步练习册答案