| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
分析 求出内切圆半径,根据三点共线原理得出x+y分别对于1,2,4,8时P点的轨迹,从而判断出答案.
解答
解:设圆心为O,半径为r,则OD⊥AC,OE⊥BC,∴3-r+4-r=5,解得r=1.
连结DE,则当x+y=1时,P在线段DE上,排除A;
在AC上取点M,在CB上取点N,使得CM=2CD,CN=2CE,连结MN,∴$\overrightarrow{CP}$=$\frac{x}{2}$$\overrightarrow{CM}$+$\frac{y}{2}$$\overrightarrow{CN}$.
则点P在线段MN上时,$\frac{x}{2}$+$\frac{y}{2}$=1,故x+y=2.
同理,当x+y=4或x+y=8时,P点不在三角形内部.排除C,D.
故选:B.
点评 本题考查了平面向量的基本定理,三点共线原理,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-1)<f(-3) | B. | f(0)>f(1) | C. | f(-1)<f(1) | D. | f(-3)<f(-5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{0}$ | B. | $\overrightarrow{BA}$ | C. | 2$\overrightarrow{AB}$ | D. | -2$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为π | |
| B. | f(x)的图象关于直线x=-$\frac{π}{8}$对称 | |
| C. | f(x)的图象关于点($\frac{π}{8}$,0)对称 | |
| D. | f(x)的图象向右平移$\frac{π}{8}$后得到一个偶函数的图象 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com