精英家教网 > 高中数学 > 题目详情
7.下列关于函数f(x)=sinx(cosx+sinx)的说法中,不正确的是(  )
A.f(x)的最小正周期为π
B.f(x)的图象关于直线x=-$\frac{π}{8}$对称
C.f(x)的图象关于点($\frac{π}{8}$,0)对称
D.f(x)的图象向右平移$\frac{π}{8}$后得到一个偶函数的图象

分析 利用三角函数中的恒等变换应用化简函数解析式可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,利用正弦函数的图象和性质即可逐一判断得解.

解答 解:∵f(x)=sinx(cosx+sinx)=$\frac{1}{2}$sin2x+$\frac{1-cos2x}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
∴f(x)的最小正周期T=$\frac{2π}{2}=π$,故A正确;
由sin[2×(-$\frac{π}{8}$)-$\frac{π}{4}$]=-1,故B正确;
由f($\frac{π}{8}$)=$\frac{\sqrt{2}}{2}$sin(2×$\frac{π}{8}$-$\frac{π}{4}$)+$\frac{1}{2}$=$\frac{1}{2}$,故C错误;
将f(x)的图象向右平移$\frac{π}{8}$后得到y=$\frac{\sqrt{2}}{2}$sin[2(x-$\frac{π}{8}$)-$\frac{π}{4}$]+$\frac{1}{2}$=$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$cos2x为偶函数,故D正确.
故选:C.

点评 本题逐一考查了三角函数中的恒等变换应用,考查了正弦函数的图象和性质,周期公式的应用,考查了数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆交CA,CB于点D,E,点P是图中阴影区域内的一点(不包含边界).若$\overrightarrow{CP}$=x$\overrightarrow{CD}$+y$\overrightarrow{CE}$,则x+y的值可以是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,2),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=lg(mx+$\sqrt{{x}^{2}+1}$)为奇函数,则m=(  )
A.-1B.1C.-1或1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了调整个人所得税征收制度,某机构准备调查了解某市市民的收人情况,随机抽取了n名市民进行试点凋查,其月收人介于1200元和4200元之间,将调查结果按如下方式分为五组:第一组[1200,1800):第二组[1800,2400)…:第五组[3600,4200].下表是按上述分组方式得到的频率分布表:
分组频数频率
[1200,1800)xA
[1800,2400)90B
[2400,3000)y0.40
[3000,3600)1600.32
[3600,4200]z0.04
(I)求n及上表中的x,y,z,a,b的值;
(Ⅱ)为了了解市民对个人所得税征收制度的意见,现利用分层抽样的方法从这n名市民中抽取一个容量为50的样本进行问卷凋查,若从第一组或第五组中抽取的市民中任选两名,求事件“两人收入之差大于1000元”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果一个点既在对数函数的图象上又在指数函数的图象上,那么称这个点为“幸运点”,在下列的五个点M(1,1),N(1,2),P(2,1),Q(2,2),G(2,$\frac{1}{2}$)中,“幸运点”有多少个(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若△ABC中,AC=$\sqrt{6}$,A=45°,C=75°,则BC=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A(2,0),B(0,3),则直线AB的方程为(  )
A.3x-2y-6=0B.2x-3y+6=0C.3x+2y-6=0D.2x+3y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在下列向量组中,可以用它们作基底把向量$\overrightarrow{m}$=(-3,5)表示出来的是(  )
A.$\overrightarrow{{e}_{1}}$=(-2,3),$\overrightarrow{{e}_{2}}$=(4,-6)B.$\overrightarrow{{e}_{1}}$=(1,5),$\overrightarrow{{e}_{2}}$=(-2,1)
C.$\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(-1,-$\frac{3}{2}$)D.$\overrightarrow{{e}_{1}}$=(3,4),$\overrightarrow{{e}_{2}}$=(-6,-8)

查看答案和解析>>

同步练习册答案