精英家教网 > 高中数学 > 题目详情
19.若△ABC中,AC=$\sqrt{6}$,A=45°,C=75°,则BC=2.

分析 由已知可求B的值,利用正弦定理即可求BC的值.

解答 解:∵AC=$\sqrt{6}$,A=45°,C=75°,
∴B=π-A-C=60°,
∴由正弦定理可得:BC=$\frac{ACsinA}{sinB}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=2.
故答案为:2.

点评 本题主要考查了三角形内角和定理,正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如果f(x)在[-5,5]上是奇函数,且f(3)<f(1),则(  )
A.f(-1)<f(-3)B.f(0)>f(1)C.f(-1)<f(1)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学随机抽取50名高一学生调查其每天运动的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,运动
的时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)定义运动的时间不少于1小时的学生称为“热爱运动”,若该校有高一学生1200人,请估计有多少学生“热爱运动”;
(3)设m,n表示在抽取的50人中某两位同学每大运动的时间,且已知m,n∈[40,60)∪[80,100],求事件“|m-n|>20”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列关于函数f(x)=sinx(cosx+sinx)的说法中,不正确的是(  )
A.f(x)的最小正周期为π
B.f(x)的图象关于直线x=-$\frac{π}{8}$对称
C.f(x)的图象关于点($\frac{π}{8}$,0)对称
D.f(x)的图象向右平移$\frac{π}{8}$后得到一个偶函数的图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=$\sqrt{x(2-x)}$的定义域为[0,2],则函数g(x)=$\frac{f(2x)}{x-1}$的定义域为[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.编写一个程序,求1~1000之间的所有3的倍数之和和所有7的倍数之和及所有3或7的倍数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知关于x的二次函数f(x)=ax2-4bx+1,设集合A={-1,1,2,3,4,5},B={-2,-1,1,2,3,4},分别从集合A和B中随机取一个数记为a和b,则函数y=f(x)在[1,+∞)上单调递增的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2sinx(cosx+$\sqrt{3}$sinx).
(1)求f(x)的单调递增区间和最小正周期;
(2)在△ABC中,C=$\frac{π}{3}$且c=$\sqrt{3}$,若x=B时,f(x)取得最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2+a(b+1)x+a+b(a,b∈R),则“a=0”是“f(x)为偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案