精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足a1=-2,an+1=5-$\frac{25}{{a}_{n}+5}$,则an=$\frac{10}{2n-7}$.

分析 化简递推关系式,推出新数列是等差数列,然后求解通项公式.

解答 解:an+1=5-$\frac{25}{{a}_{n}+5}$=$\frac{5{a}_{n}}{{a}_{n}+5}$,
可得:$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}+\frac{1}{5}$,即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=\frac{1}{5}$,
所以{$\frac{1}{{a}_{n}}$}是以$-\frac{1}{2}$为首项,$\frac{1}{5}$为公差的等差数列.
$\frac{1}{{a}_{n}}=-\frac{1}{2}+(n-1)×\frac{1}{5}$,
解得an=$\frac{10}{2n-7}$.
故答案为:$\frac{10}{2n-7}$.

点评 本题考查等差数列通项公式的求法,数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.$[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=3$
[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10
[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21

按照此规律第n个等式的等号右边的结果为n(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=ax2+bx+c(a,b,c∈R).
(1)若f(1)=0,a>b>c,求证:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.
(2)若f(1)=-$\frac{a}{2}$,3a>2c>2b,求证:
①a>0,且-3<$\frac{b}{a}$<-$\frac{3}{4}$;
②函数f(x)在区间(0,2)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是等比数列,a1,a2,a3依次位于表中第一行,第二行,第三行中的某一格内,又a1,a2,a3中任何两个都不在同一列,则an=2•3n-1(n∈N*).
 第一列第二列第三列
第一行1102
第二行6144
第三行9188

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简、求值:
(I)sin140°($\sqrt{3}$-tan10°);
(II)已知α、β都是锐角,tanα=$\frac{1}{7}$,sinβ=$\frac{\sqrt{10}}{10}$,求sin(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.甲、乙两同学5次综合评测的成绩如茎叶图所示.老师发现乙同学成绩的一个数字无法看清.但老师知道乙的平均成绩超过甲的平均成绩,则看不清楚的数字为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P为圆x2+y2=9上的任意一点,EF为圆N:(x-1)2+y2=1的任意一条直径,则$\overrightarrow{PE}•\overrightarrow{PF}$的取值范围(  )
A.[-1,15]B.[-1,9]C.[3,15]D.[0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a∈R).
(1)如果函数y=f(x)和y=g(x)有相同的极值点,求a的值,并直接写出函数f(x)的单调区间;
(2)令F(x)=f(x)-g(x),讨论函数y=F(x)在区间[-1,3]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,圆C的方程为ρ=4$\sqrt{2}cos(θ-\frac{π}{4})$,以极点为坐标原点、极轴为x轴的正半轴建立平面直角坐标系,直线l的方程为ρsin($\frac{π}{4}$-θ)=$\sqrt{2}$,求直线l被圆C截得的弦AB的长度.

查看答案和解析>>

同步练习册答案