| A. | 7 | B. | 14 | C. | 6 | D. | 12 |
分析 利用正弦定理得出a,b,c的关系,使用余弦定理求出一个角的余弦,再计算正弦,代入面积公式解出.
解答 解:在△ABC中,∵(sinA+sinB):(sinA+sinC):(sinB+sinC)=4:5:6,
∴(a+b):(a+c):(b+c)=4:5:6.
∴a:b:c=3:5:7.
设a=3k,b=5k,c=7k,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$.
∴sinC=$\frac{\sqrt{3}}{2}$.
∴S△ABC=$\frac{1}{2}absinC$=$\frac{15\sqrt{3}{k}^{2}}{4}$=15$\sqrt{3}$,
∴k=2.
∴c=7k=14.
故选:B.
点评 本题考查了正弦定理,余弦定理的应用,三角形的面积公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,4] | B. | [1,2] | C. | [0,1] | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}-\frac{i}{2}$ | B. | $\frac{3}{2}+\frac{i}{2}$ | C. | $-\frac{3}{2}+\frac{i}{2}$ | D. | $-\frac{3}{2}-\frac{i}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com