精英家教网 > 高中数学 > 题目详情
16.已知直线l1:y=x+2,l2:y=x-2,矩阵$M=({\begin{array}{l}0&2\\ 1&0\end{array}})$.
(Ⅰ)求直线l1经过矩阵M变换之后得到的直线方程;
(Ⅱ)若将(Ⅰ)中所得直线再进行伸缩变换N之后得到直线l2,求伸缩变换的矩阵N.

分析 (Ⅰ)由矩阵的变换公式可知:$({\begin{array}{l}0&2\\ 1&0\end{array}})(\begin{array}{l}x\\ y\end{array})=(\begin{array}{l}2y\\ x\end{array})=(\begin{array}{l}{x'}\\{y'}\end{array})$,求得$\left\{\begin{array}{l}y=\frac{1}{2}x'\\ x=y'\end{array}\right.$,由y=x+2,代入可知x'-2y'-4=0,经过矩阵M变换之后得到的直线方程为x-2y-4=0;
(Ⅱ)设伸缩变换N=$({\begin{array}{l}s&0\\ 0&t\end{array}})$点(x',y')经变换N之后得到的点(x'',y''),可知:$\left\{\begin{array}{l}x''=sx'\\ y''=ty'\end{array}\right.$,由又l2的方程为y=x-2,又(Ⅰ)中所得到的直线为x'-2y'-4=0,因此$\frac{s}{1}=\frac{t}{2}=\frac{2}{4}$,求得$s=\frac{1}{2},t=1$,即可求得伸缩变换的矩阵N.

解答 解:(Ⅰ)设直线l1上的任意一点为(x,y)经过矩阵M变换之后得到的点为(x',y'),
则$({\begin{array}{l}0&2\\ 1&0\end{array}})(\begin{array}{l}x\\ y\end{array})=(\begin{array}{l}2y\\ x\end{array})=(\begin{array}{l}{x'}\\{y'}\end{array})$…(1分)
∴$\left\{\begin{array}{l}y=\frac{1}{2}x'\\ x=y'\end{array}\right.$,
又y=x+2,
∴$\frac{1}{2}x'=y'+2$,即x'-2y'-4=0,
∴经过矩阵M变换之后得到的直线方程为x-2y-4=0…(3分)
(Ⅱ)设伸缩变换N=$({\begin{array}{l}s&0\\ 0&t\end{array}})$点(x',y')经变换N之后得到的点(x'',y''),
则$({\begin{array}{l}s&0\\ 0&t\end{array}})(\begin{array}{l}{x'}\\{y'}\end{array})=(\begin{array}{l}sx'\\ ty'\end{array})=(\begin{array}{l}{x''}\\{y''}\end{array})$,
∴$\left\{\begin{array}{l}x''=sx'\\ y''=ty'\end{array}\right.$,(4分)
又l2的方程为y=x-2,
故ty'=sx'-2,
即sx'-ty'-2=0
又(Ⅰ)中所得到的直线为x'-2y'-4=0,
∴$\frac{s}{1}=\frac{t}{2}=\frac{2}{4}$,
即$s=\frac{1}{2},t=1$
∴$N=({\begin{array}{l}{\frac{1}{2}}&0\\ 0&1\end{array}})$.(7分)

点评 本题考查矩阵变换的应用,考查了矩阵与变换的运算、变换的矩阵求法等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设各项均为正数的数列{an}的前n项和为Sn满足$a_{n+1}^2=4{S_n}+4n+1,n∈{N^*}$,且a2,a5,a14恰好是等比数列{bn}的前三项.记数列{bn}的前n项和为Tn,若对任意的n∈N*,不等式$({T_n}+\frac{3}{2})•k≥3n-6$恒成立,则实数k的取值范围是$[\frac{2}{27},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过椭圆C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}+\frac{{y_{\;}^2}}{{b_{\;}^2}}=1$(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B.且点B在x轴上射影恰好为右焦点F,若$\frac{1}{6}<|k|<\frac{1}{3}$,则椭圆C的离心率取值范围是(  )
A.($\frac{2}{3},\frac{5}{6}$)B.($\frac{2}{3}$,1)C.($\frac{1}{4},\frac{3}{4}$)D.($\frac{1}{4},\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=cos2x-sin2x的图象,只需将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{2}$个单位长度B.向右平移$\frac{π}{2}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知m、n∈R+,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值为2,证明:4(m2+$\frac{{n}^{2}}{4}$)的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从区间[-2,9]中任取一个实数a,则恰使得函数f(x)=ln(ax2-2x+a)存在最大值或最小值的概率为(  )
A.$\frac{1}{11}$B.$\frac{8}{11}$C.$\frac{9}{11}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知矩阵A=$[\begin{array}{l}{1}&{b}\\{-1}&{a}\end{array}]$(a,b∈R),若点P(1,1)在矩阵A对应的变换作用下得到点P′(-1,1).
(1)求实数a,b的值;
(2)求矩阵A的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四棱锥S-ABCD中SA⊥底面ABCD,ABCD是正方形,且SA=AB,若点E是SA的中点.
(1)求证:SC∥平面EBD;
(2)求二面角S-CD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)满足f(-x)=f(x),f(x+1)=-$\frac{1}{f(x)}$,且当x∈[-1,0]时,f(x)=|x|.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是(  )
A.$({0,\;\frac{1}{2}}]$B.$({0,\;\frac{1}{3}}]$C.$({0,\;\frac{1}{4}}]$D.$[{\frac{1}{4},\;\;\frac{1}{3}}]$

查看答案和解析>>

同步练习册答案