精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{|x|}{x+2}$,如果关于x的方程f(x)=kx2有四个不同的实数解,则k的取值范围是(  )
A.k>1B.k≥1C.0<k<1D.0<k≤1

分析 根据方程的特点,相当于只需有三个不等于零的不同实数根,把方程解的问题转化为两函数的交点问题,通过数形结合得出k的范围.

解答 解:f(x)=kx2有四个不同的实数解,
∴显然当x=0时,无论k为何值,都成立,
当只需有三个不等于零的不同实数根,
∴方程可化$\frac{1}{k}$=|x|(x+2),
只需y=$\frac{1}{k}$和y=|x|(x+2)有三个不等于零的交点即可,画出函数y=|x|(x+2)的图象如图:
有图象可知只需0<$\frac{1}{k}$<1,
∴k>1,
故选A.

点评 本题考查了方程的解和函数的交点问题的转换,难点是利用数形结合的思想解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.比较tan1,tan2,tan3,tan4的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{(1-a)}{6}$x3+$\frac{1}{2}$ax2-$\frac{3}{2}$x(a∈R),g(x)=lnx-$\frac{3}{2}$.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)设函数f(x)的导函数为f′(x),记φ(x)=f′(x)-g(x).证明:对任意a∈(2,3),x1,x2∈[1,2]时,不等式|φ(x1)-φ(x2)|<ln2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,三棱锥S-ABC中,棱SA,SB,SC两两垂直,且SA=SB=SC,则二面角A-BC-S大小的正切值为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,a7=16,an-$\frac{1}{2}$an+1=0,则a2的值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若α,β都是锐角,且$sinα=\frac{2\sqrt{5}}{5},sin(α-β)=\frac{\sqrt{10}}{10}$,则cosβ=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{2}$或$-\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1 分别是线段BC,B1C1的中点,过线段AD的中点P作BC的平行线,分别交AB,AC于点M,N.
(Ⅰ)证明:MN⊥平面ADD1A1
(Ⅱ)求二面角A-A1M-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$cos\frac{2π}{3}•tan\frac{7π}{4}$的值为(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.随机抛掷一枚质地均匀的骰子,记正面向上的点数为a,则函数f(x)=x2+2ax+2有两个不同零点的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案