精英家教网 > 高中数学 > 题目详情
9.在△ABC中,a,b,c分别是角A,B,C的对边,且$2sinAsinC(\frac{1}{tanAtanC}-1)=-1$.
(Ⅰ)求B的大小;
(Ⅱ)若$a+c=\frac{{3\sqrt{3}}}{2},b=\sqrt{3}$,求△ABC的面积.

分析 (Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cosB的值,即可确定出B的大小;
(Ⅱ)由cosB,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面积公式即可求出三角形ABC面积.

解答 解:(Ⅰ)∵$2sinAsinC(\frac{1}{tanAtanC}-1)=-1$.
∴2cosAcosC(tanAtanC-1)=1
∴2cosAcosC($\frac{sinAsinC}{cosAcosC}$-1)=1,
∴2(sinAsinC-cosAcosC)=1,
即cos(A+C)=-$\frac{1}{2}$,
∴cosB=-cos(A+C)=$\frac{1}{2}$,
又0<B<π,
∴B=$\frac{π}{3}$;
(Ⅱ)由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∴$\frac{(a+c)^{2}-2ac-{b}^{2}}{2ac}$=$\frac{1}{2}$,
又a+c=$\frac{3\sqrt{3}}{2}$,b=$\sqrt{3}$,
∴$\frac{27}{4}$-2ac-3=ac,即ac=$\frac{5}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×$\frac{5}{4}$×$\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{16}$.

点评 此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设复数z1和z2关于虚轴对称且z1=2+i,那么z1z2等于(  )
A.-5B.5C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.己知直线2x-y-1=0与直线x-2y+1=0交于点P.
(1)求过点P且垂直于直线3x+4y-15=0的直线l1的方程;(结果写成直线方程的一般式)
(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则f(sinα)与f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.f(sinα)≥f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.x(x-3)<0是|x-1|<2成立的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知圆C1的参数方程为$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=2+sinϕ}\end{array}}\right.$(ϕ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={3,4,5,6,7},B={x|3<x<7},则A∩(∁UB)=(  )
A.{3,5,7}B.{3,7}C.{4,5,6}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知q>0的等比数列{an},若a3,a7是方程x2-5x+4=0的两个根,则a5=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)($\frac{\sqrt{3}}{2}$i-$\frac{1}{2}$)+$\frac{\sqrt{3}}{2}$i=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案