精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c是其三个内角A,B,C的对边,且a≥b,sin2A+$\sqrt{3}$cos2A=2sin2B
(Ⅰ)求角C的大小
(Ⅱ)设c=$\sqrt{3}$,求△ABC的面积S的最大值.

分析 (Ⅰ)化简已知可得sin(2A+$\frac{π}{3}$)=sin2B,从而有2A+$\frac{π}{3}$=2B或2A+$\frac{π}{3}$=π-2B,结合已知大边对大角即可解得C的值.
(Ⅱ)由(Ⅰ)可求sinC,由余弦定理cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$可得ab≤1,从而可求△ABC的面积S的最大值.

解答 解:(Ⅰ)∵sin2A+$\sqrt{3}$cos2A=2sin2B,
∴2($\frac{1}{2}$sin2A+$\frac{\sqrt{3}}{2}$cos2A)=2sin2B,
∴2sin(2A+$\frac{π}{3}$)=2sin2B,
∴sin(2A+$\frac{π}{3}$)=sin2B,
∴2A+$\frac{π}{3}$=2B或2A+$\frac{π}{3}$=π-2B,
由a≥b,知A≥B,所以2A+$\frac{π}{3}$=2B不可能成立,所以2A+$\frac{π}{3}$=π-2B,
即A+B=$\frac{π}{3}$,
所以C=$π-\frac{π}{3}$=$\frac{2π}{3}$…6分
(Ⅱ)由(Ⅰ),C=$\frac{2π}{3}$,所以sinC=$\frac{\sqrt{3}}{2}$,
S=$\frac{1}{2}absinC=\frac{\sqrt{3}}{4}ab$,
cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$⇒-$\frac{1}{2}=\frac{{a}^{2}+{b}^{2}-3}{2ab}$⇒-ab=a2+b2-3⇒3-ab=a2+b2≥2ab⇒ab≤1,
即△ABC的面积S的最大值为$\frac{\sqrt{3}}{4}$…12分

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.以曲线C:y=x2(x≥0)上某一点A为切点作一切线l,使之与曲线C以及x轴所围成的图形的面积为$\frac{2}{3}$,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(Ⅰ) 估计这500件产品质量指标值的样本平均数$\overline x$.
(Ⅱ)由频率分布直方图可以认为,这种总产品的质量指标值Z近似服从正态分布N(μ,δ2),其中μ近似为样本平均数$\overline x$,δ2近似为样本方差s2.(由样本估计得样本方差为s2=150)
(i)利用该正态分布,求P(Z<212.2);
(ii)若将这种产品质量指标值位于这三个区间(-∞,187.8)(187.8,212.2)(212.2.,+∞)的等级分别为二等品,一等品,优质品,这三类等级的产品在市场上每件产品的利润分别为2元,5元,10元.某商户随机从该企业批发100件这种产品后卖出获利,记X表示这100件产品的利润,利用正态分布原理和(i)的结果,求EX.
附:$\sqrt{150}$≈12.2.若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,过抛物线y2=2px(p>0)焦点F的直线交抛物线于A,B两点,O为坐标原点,C为抛物线准线与x轴的交点,且∠CFA=135°,则tan∠ACB=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若Sn=12-22+32-42…(-1)n-1•n2,则(n-6)•S2n+1的最小值为-90.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的内角A、B、C对应的边分别为a,b,c,且关于x的方程2a2+2x2+b2=2bx+2$\sqrt{2}$ax只有一个零点,${(\sqrt{2}b+a)cosC+ccosA=0$,S△ABC=$\frac{{\sqrt{2}}}{2}$sinA•sinB,则边c=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M=|x|2x-3<1|,集合N=|x|-1<x<3|,则M∩N=(  )
A.MB.NC.|x|-1<x<2|D.|x|x<3|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为(  )
A.$\frac{\sqrt{2}+1}{2}$B.$\sqrt{2}$+1C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

同步练习册答案