精英家教网 > 高中数学 > 题目详情
3.下列命题:
①一条直线在平面上的射影一定是直线;
②在平面上的射影是直线的图形一定是直线;
③两直线与同一个平面所成角相等,则这两条直线互相平行;
④两条平行直线与同一个平面所成角一定相等.
其中所有真命题的序号是④.

分析 对四个命题分别分析解答;注意特殊情况.

解答 解:对于①,当直线与平面垂直是,此直线在平面上的射影是一个点;故①错误;
对于②,如果两个平面垂直,其中一个平面在另一个平面上的射影是一条直线,故在平面上的射影是直线的图形一定是直线是错误的;
对于③,两直线与同一个平面所成角相等,则这两条直线相交、异面或者平行;故③错误;
对于④,两条平行直线,根据线面所成角的定义可以判断它们与同一个平面所成角一定相等;故④正确;
故答案为:④.

点评 本题考查了图形 的射影;考查了学生的空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设n∈R,函数fn(x)=xn|x-a|(x≠a),其中a≥0
(1)求函数f2(x)的极值;
(2)设一直线与函数f3(x)的图象切于两点A(x1,y1),B(x2,y2),且x1<x2<a.x12+x22=1,求a的值
(3)当a=0时,数列ak=f0(k),k∈N+.对任意给定的正整数n(n≥2),数列{bn}满足$\frac{{b}_{k+1}}{{b}_{k}}=\frac{k-n}{{a}_{k+1}}$(k=1,2,…,n-1),b1=1,求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)的定义域为D,若存在正实数k,使得对于任意x∈D,有(x+k)∈D,且f(x+k)≥f(x),则称f(x)是D上的“k级增函数”.
(1)试判断函数f(x)=sinx是否为R上的“k级增函数”?请说明理由;
(2)试证明:对任意的实数k∈(0,4),函数h(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,(x≥0)}\\{{-x}^{2}-2x,(x<0)}\end{array}\right.$不是R上的“k级增函数”;
(3)已知奇函数g(x)是R上的“4级增函数”,且当x≥0时,g(x)=|x-a2|-a2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC上的点,且PM=2MC.
(1)求证:AD⊥PB;
(2)若AB=PD=2,求三棱锥D-BPM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图正四棱锥S-ABCD,底面边长为2,P为侧棱SD上靠近D的三等分点,
(1)若SD⊥PC,求正四棱锥S-ABCD的体积;
(2)在侧棱SC上是否存在一点E,使得BE∥平面PAC,若存在请找到点E并求SE:EC的比值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}各项均不相等,满足an+an-2=2an-1(n≥3,n∈N+),其前3项的和为9,且a4+1是a2+1与a8+1的等比中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn+1-bn=an(n∈N+),且b1=-1,求数列$\frac{1}{{b}_{n}+3n}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是(  )
A.AC⊥平面ABB1A1B.CC1与B1E是异面直线
C.A1C1∥B1ED.AE⊥BB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=2,D,E分别为AC,BD的中点,连接AE并延长BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2,所示,
(1)求证:AE⊥平面BCD;
(2)求平面AEF与平面ADC所成的锐角二面角的余弦值;
(3)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指出点M的位置;若存在,请指出点M的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示的一块长方体木料中,已知AB=BC=4,AA1=1,设E为底面ABCD的中心,且$\overrightarrow{AF}=λ\overrightarrow{AD}$(0≤λ≤$\frac{1}{2}$),则该长方体中经过点A1、E、F的截面面积的最小值为$\frac{12\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案