精英家教网 > 高中数学 > 题目详情
5.已知四棱锥S-ABCD的底面为平行四边形,且SD⊥平面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分别为SB,SC的中点,过MN作平面MNPQ分别与线段CD,AB相交于点P,Q,且$\overrightarrow{AQ}=λ\overrightarrow{AB}$.
(1)当$λ=\frac{1}{2}$时,证明:平面MNPQ∥平面SAD;
(2)是否存在实数λ,使得二面角M-PQ-B为60°?若存在,求出λ的值;若不存在,请说明理由.

分析 (1)推导出MN∥BC,MN∥BC,从而MN∥平面SAD,再求出MQ∥平面SAD,由此能证明平面MNPQ∥平面SAD.
(2)连结BD,交PQ于点R,则BC∥平面MNPQ,从而PQ∥BC∥AD,推导出AD⊥平面SBD,PQ⊥平面SBD,则∠MRB为二面角M-PQ-B的平面角,从而∠MRB=60°,过M作ME⊥DB于E,则ME∥SD,从而ME⊥平面ABCD,由此能求出结果.

解答 证明:(1)∵M,N分别是SB,SC的中点,∴MN∥BC,
由底面ABCD为平行四边形,得AD∥BC,∴MN∥BC,
又MN?平面SAD,∴MN∥平面SAD,
∵λ=$\frac{1}{2}$,∴Q为AB的中点,∴MQ∥SA,
又MQ?平面SAD,∴MQ∥平面SAD,
∵MN∩MQ=M,∴平面MNPQ∥平面SAD.
解:(2)连结BD,交PQ于点R,
∵MN∥BC,∴BC∥平面MNPQ,
又平面MNPQ∩平面ABCD=PQ,
∴PQ∥BC∥AD,
在?ABCD中,AB=2AD,∠DCB=60°,∴AD⊥DB,
又SD⊥平面ABCD,∴SD⊥AD,且SD∩DB=D,
∴AD⊥平面SBD,
∴PQ⊥平面SBD,∴∠MRB为二面角M-PQ-B的平面角,
∴∠MRB=60°,
∵过M作ME⊥DB于E,则ME∥SD,∴ME⊥平面ABCD,
设AD=SD=a,∴M为SB的中点,∴ME=$\frac{a}{2}$,DE=$\frac{\sqrt{3}a}{2}$,
在Rt△MER中,ME=$\frac{a}{2}$,∠MRB=60°,∴RE=$\frac{\sqrt{3}}{6}a$,
∴DR=DE-RE=$\frac{\sqrt{3}}{3}a$,
∴$\frac{DR}{DB}=\frac{\frac{\sqrt{3}}{3}a}{\sqrt{3}a}$=$\frac{1}{3}$,∵PQ∥AD,∴$λ=\frac{AQ}{AB}=\frac{DR}{DB}=\frac{1}{3}$.

点评 本题考查面面平行的证明,考查二面角、空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.关于x的不等式|x-2|+|x-8|≥a在R上恒成立,则a的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.x,y是整数,a>b>0,且a+b=10,$\frac{a}{x}+\frac{b}{y}$=1,x+y的最小值为18,则a,b的值分别是(  )
A.a=8,b=2B.a=9,b=1C.a=7,b=3D.a=7,b=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知sin2A+sin2B=sin2C,求证这个三角形是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则($\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-$\overrightarrow{b}$)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项为正数,其前n项和为Sn满足${S_n}={(\frac{{{a_n}+1}}{2})^2}$,设bn=10-an(n∈N).
(1)求证:数列{an}是等差数列,并求{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,求Tn的最大值.
(3)设数列{bn}的通项公式为${b_n}=\frac{a_n}{{{a_n}+t}}$,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|对于任意b∈R都成立.
(1)求a的值;
(2)设x>y>0,求证:$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-3,-$\frac{{\sqrt{6}}}{2}$)是抛物线C:y2=2px(p>0)准线上的一点,点F是C的焦点,点P在C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则该双曲线的离心率为(  )
A.3B.$\frac{3}{2}$C.$\sqrt{2}+1$D.$\frac{{\sqrt{2}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$f(α)=\frac{{sin(7π-α)•cos(α+\frac{3π}{2})•cos(3π+α)}}{{sin(α-\frac{3π}{2})•cos(α+\frac{5π}{2})•tan(α-5π)}}$.
(1)化简f(α);
(2)若α是第二象限,且$cos(\frac{3π}{2}+α)=\frac{1}{7}$,求f(α)的值.

查看答案和解析>>

同步练习册答案