精英家教网 > 高中数学 > 题目详情
16.直线$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)上与点A(-1,0)的距离最小的点的坐标是(0,1).

分析 直线的参数方程消去参数t,得直线的普通方程为x+y-1=0,设直线上与点A(-1,0)的距离最小的点的坐标是(a,b),列出方程组,求出a,b.能求出直线上与点A(-1,0)的距离最小的点的坐标.

解答 解:直线$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)消去参数t,
得直线的普通方程为x+y-1=0,
设直线上与点A(-1,0)的距离最小的点的坐标是(a,b),
则$\left\{\begin{array}{l}{a+b-1=0}\\{\frac{b}{a+1}=1}\end{array}\right.$,解得a=0,b=1.
∴直线上与点A(-1,0)的距离最小的点的坐标是(0,1).
故答案为:(0,1).

点评 本题考查点的坐标的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列不等关系式正确的是(  )
A.${1.5^{\frac{5}{4}}}$>${1.7^{\frac{5}{4}}}$B.${(\frac{4}{3})^{\frac{3}{4}}}$>${(\frac{4}{3})^{\frac{4}{3}}}$C.${(\sqrt{2})^{-\frac{1}{2}}}$>${(\sqrt{3})^{-\frac{1}{2}}}$D.${(0.7)^{\frac{3}{2}}}$>${(0.7)^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱锥O-ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,则三棱锥O-ABC体积的最大值为(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$\frac{{9\sqrt{3}}}{2}$C.$\frac{9}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-2<x<5};
(1)若B⊆A,B={x|m+1<x<2m-1},求实数m的取值范围;
(2)若A⊆B,B={x|m-6<x<2m-1},求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知矩阵$A=[{\begin{array}{l}1&{\frac{1}{2}}\\ 0&1\end{array}}],B=[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,设点$P({\frac{7}{4},\frac{5}{2}})$在矩阵BA对应的变换TBA作用下得到P'点,求点P'的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+ax-a(a∈R且a≠0)在点(0,f(0))处的切线与直线y=3平行,
(1)求实数a的值,
(2)求此时f(x)在[-2,1]上的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)满足:f(x)=f(x+2),且当x∈[0,2]时,f(x)=(x-1)2,则f($\frac{7}{2}$)等于(  )
A.0B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,A,B,C所对的边分别为a,b,c,$\overrightarrow m=(sinx,cosx),\overrightarrow n=(cos(x-A),sin(x-A))$,函数$f(x)=\overrightarrow m•\overrightarrow n(x∈R)$在$x=\frac{5π}{12}$处取得最大值.
(1)当$x∈(0,\frac{π}{2})$时,求函数f(x)的值域;
(2)若a=7且$sinB+sinC=\frac{{13\sqrt{3}}}{14}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.3B.6C.12D.18

查看答案和解析>>

同步练习册答案