精英家教网 > 高中数学 > 题目详情
15.如图所示,两个圆相内切于点T,公切线为TN,外圆的弦TC,TD分别交内圆于A、B两点,并且外圆的弦CD恰切内圆于点M.
(Ⅰ)证明:AB∥CD;
(Ⅱ)证明:AC•MD=BD•CM.

分析 (Ⅰ)证明∠TCD=∠TAB,即可证明AB∥CD;
(Ⅱ)证明:∠MTD=∠ATM,利用正弦定理证明$\frac{MD}{MC}=\frac{TD}{TC}$,由AB∥CD知$\frac{TD}{TC}=\frac{BD}{AC}$,即可证明AC•MD=BD•CM.

解答 (Ⅰ)由弦切角定理可知,∠NTB=∠TAB,…(3分)
同理,∠NTB=∠TCD,所以,∠TCD=∠TAB,
所以,AB∥CD.…(5分)
(Ⅱ)连接TM、AM,
因为CD是切内圆于点M,
所以由弦切角定理知,∠CMA=∠ATM,
又由(Ⅰ)知AB∥CD,
所以,∠CMA=∠MAB,又∠MTD=∠MAB,
所以∠MTD=∠ATM.…(8分)
在△MTD中,由正弦定理知,$\frac{MD}{sin∠DTM}=\frac{TD}{sin∠TMD}$,
在△MTC中,由正弦定理知,$\frac{MC}{sin∠ATM}=\frac{TC}{sin∠TMC}$,因∠TMC=π-∠TMD,
所以$\frac{MD}{MC}=\frac{TD}{TC}$,由AB∥CD知$\frac{TD}{TC}=\frac{BD}{AC}$,
所以$\frac{MD}{MC}=\frac{BD}{AC}$,即,AC•MD=BD•CM.…(10分)

点评 本题考查正弦定理,弦切角定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知3tan(α-$\frac{π}{12}$)=tan(α+$\frac{π}{12}$),求证:sin2α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点.根据图乙解答下列各题:
(1)求点D到平面ABC的距离;
(2)如图:若∠DOB的平分线交弧$\widehat{BD}$于一点G,试判断FG是否与平面ACD平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛MVP(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.
比分易建联技术统计
投篮命中罚球命中全场得分真实得分率
中国91-42新加坡3/76/71259.52%
中国76-73韩国7/136/82060.53%
中国84-67约旦12/202/526x
中国75-62哈萨克期坦5/75/51581.52%
中国90-72黎巴嫩7/115/51971.97%
中国85-69卡塔尔4/104/41355.27%
中国104-58印度8/125/52173.94%
中国70-57伊朗5/102/41355.27%
中国78-67菲律宾4/143/61133.05%
注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真实得分率)是衡量球员进攻的效率,其计算公式为:
TS%=$\frac{全场得分}{2×(投篮出手次数+0.44×罚球出手次数)}$.
(Ⅰ)求表中x的值;
(Ⅱ)从上述9场比赛中随机选择一场,求易建联在该场比赛中TS%超过50%的概率;
(Ⅲ)用x来表示易建联某场的得分,用y来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断y与x之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),左焦点F(-$\sqrt{3}$,0),且离心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=x+m与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆C的右顶点A.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图:△ABC中,BC=12,以BC为直径的半圆分别交AB、AC于点E、F,若AC=3AE,求EF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.
(Ⅰ)求证:AE=EB;
(Ⅱ)若EF•FC=$\frac{4}{5}$,求正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.焦距为6,离心率e=$\frac{3}{5}$,焦点在y轴上的椭圆标准方程是(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知p:{x|x≥-2},q:{x|x<3},请写出满足下列条件的x的集合:
(Ⅰ)p∧q为真;
(Ⅱ)p真q假;
(Ⅲ)p假q真.

查看答案和解析>>

同步练习册答案