精英家教网 > 高中数学 > 题目详情
设实数x,y满足
x-y-2≤0
x+2y-5≥0
y-2≤0
则z=
2x+y+2
x+1
的取值范围是(  )
A、[
9
4
,3]
B、[
1
4
,1]
C、[1,
9
4
]
D、[1,3]
考点:简单线性规划
专题:不等式的解法及应用
分析:作出可行域,利用z的几何意义,即可得到结论.
解答: 解:z=
2x+y+2
x+1
=
2(x+1)
x+1
+
y
x+1
=2+
y
x+1

设k=
y
x+1
,则k的几何意义是到点D(-1,0)的斜率,
作出不等式组对应的平面区域如图:
则DC的斜率最小,AD的斜率最大,
y=2
x+2y-5=0
,解得
x=1
y=2
,即A(1,2),此时AD的斜率为
2
1+1
=1
,此时z最大为2+1=3,
x-y-2=0
x+2y-5=0
,解得
x=3
y=1
,即C(3,1),此时DC的斜率为
1
3+1
=
1
4
,此时z最小为2+
1
4
=
9
4

故z∈[
9
4
,3],
故选:A.
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABCD-A1B1C1D1是正方体,在底面A1B1C1D1上任取一点M,则∠MAA1
π
6
的概率P=(  )
A、
π
15
B、
π
12
C、
π
9
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={x||x-1|≤2,x∈R},T={x|
5
x+1
≥0,x∈Z},则S∩T=(  )
A、{x|0<x<3,x∈Z}
B、{x|0≤x≤3,x∈Z}
C、{x|-1≤x≤3,x∈Z}
D、{x|-1<x<3,x∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

若tan(2π+α)=
3
4
,则tan(α+
π
4
)=(  )
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,若∠A=∠C=60°,AD=BC=2,且AB≠CD,则四边形ABCD的面积为(  )
A、
3
2
B、
3
C、
6
2
D、与点B的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:

某市电视谈为调查节目收视率,想从全市5个区中按人口数用分层抽样的方法抽取一个容量为n的样本,已知5个区人口数之比为2:3:5:2:6,如果最多的一个区抽出的个体数是100,则这个样本的容量等于(  )
A、240B、270
C、300D、330

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游景点有一座风景秀丽的山峰,游客可以乘长为3km的索道AC上山,也可以沿山路BC上山,山路BC中间有一个距离山脚B为1km的休息点D.已知∠ABC=120°,∠ADC=150°.假设小王和小李徒步攀登的速度为每小时1.2km,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B点出发到达C点)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
2-cosx
sinx
在(0,π)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.
(1)求满足条件a+b≥9的概率;
(2)求直线ax+by+5=0与x2+y2=1相切的概率
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

同步练习册答案