精英家教网 > 高中数学 > 题目详情
15.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E1,F1分别是A1B1,C1D1的一个四等分点,
(1)求BE1与DF1所成的角的余弦值;
(2)求证:A1B⊥AC1

分析 根据题图中的坐标系得到向量$\overrightarrow{B{E}_{1}},\overrightarrow{D{F}_{1}},\overrightarrow{{A}_{1}B},\overrightarrow{A{C}_{1}}$的坐标,利用向量的坐标运算解答.

解答 解:(1)由已知题图中坐标系得到D(0,0,0),B(1,1,0),E1(1,$\frac{3}{4}$,1),F1(0,$\frac{1}{4}$,1),
$\overrightarrow{B{E}_{1}}$=(0,$-\frac{1}{4}$,1),$\overrightarrow{D{F}_{1}}$=(0,$\frac{1}{4}$,1),
所以cos<$\overrightarrow{B{E}_{1}},\overrightarrow{D{F}_{1}}$>=$\frac{\overrightarrow{B{E}_{1}}•\overrightarrow{D{F}_{1}}}{|\overrightarrow{B{E}_{1}}||\overrightarrow{D{F}_{1}}|}$=$\frac{\frac{15}{16}}{\sqrt{\frac{17}{16}}\sqrt{\frac{17}{16}}}=\frac{15}{17}$,
所以BE1与DF1所成的角的余弦值为$\frac{15}{17}$;
(2)由(1)得$\overrightarrow{{A}_{1}B}$=(0,1,-1),$\overrightarrow{A{C}_{1}}$=(-1,1,1),
所以$\overrightarrow{{A}_{1}B}•\overrightarrow{A{C}_{1}}$=0,
所以$\overrightarrow{{A}_{1}B}⊥\overrightarrow{A{C}_{1}}$
所以1B⊥AC1

点评 本题考查了正方体中线线关系的判断;解答本题的关键是利用空间向量的数量积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD所在平面与直角三角形ABE所在平面互相垂直,AE⊥BE,点M,N分别是AE,CD的中点.
(1)求证:MN∥平面BCE;
(2)求证:平面BCE⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C的圆心在y轴的负半轴上,且与x轴相切,被双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的渐近线截得的弦长为$\sqrt{3}$,则圆C的方程为(  )
A.x2+(y+1)2=1B.x2+(y+$\sqrt{3}$)2=3C.x2+(y+$\frac{\sqrt{3}}{2}$)2=$\frac{3}{4}$D.x2+(y+2)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图1,一个底面是正三角形,侧棱与底面垂直的棱柱形容器,底面边长为a,高为2a,内装水若干.将容器放倒,把一个侧面作为底面,如图2,这时水面恰好为中截面(D,D′E,E′分别是棱CB,C′B′,CA,C′A′的中点),则图1中容器内水面的高度为$\frac{3}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(Ⅰ) 求证:ED⊥BC;
(Ⅱ) 求证:平面BDE⊥平面BEC;
(Ⅲ)判断直线BM和平面ADEF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$(a∈R).
(1)若函数f(x)为奇函数,求a的值;
(2)当a=-1,若不等式f(k-t2)+f(|2t-1|)<0对于任意的t∈[-3,2]恒成立,求实数k的取值范围;
(3)当a≠0时,存在区间[m,n],使得函数f(x)在[m,n]的值域为[2m,2n],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.两条直线没有公共点,则这两条直线的位置关系是平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.过圆O:x2+y2=r2(r>0)上一点M作圆O的切线l与椭圆E:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$交于点A,B两点.
(1)若点M的坐标为(2,2),r=2$\sqrt{2}$,点C的坐标为(4,4),求$\overrightarrow{CA}•\overrightarrow{CB}$的值
(2)若r=1,直线l与椭圆E交于C,D两点,且N是线段CD的中点,求中点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x-2|-2}$是(  )
A.奇函数B.偶函数
C.既是奇函数,又是偶函数D.既非奇函数,又非偶函数

查看答案和解析>>

同步练习册答案