4£®¹ýÔ²O£ºx2+y2=r2£¨r£¾0£©ÉÏÒ»µãM×÷Ô²OµÄÇÐÏßlÓëÍÖÔ²E£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$½»ÓÚµãA£¬BÁ½µã£®
£¨1£©ÈôµãMµÄ×ø±êΪ£¨2£¬2£©£¬r=2$\sqrt{2}$£¬µãCµÄ×ø±êΪ£¨4£¬4£©£¬Çó$\overrightarrow{CA}•\overrightarrow{CB}$µÄÖµ
£¨2£©Èôr=1£¬Ö±ÏßlÓëÍÖÔ²E½»ÓÚC£¬DÁ½µã£¬ÇÒNÊÇÏß¶ÎCDµÄÖе㣬ÇóÖеãNµÄ¹ì¼£·½³Ì£®

·ÖÎö £¨1£©¹ýM£¨2£¬2£©µÄÔ²OµÄÇÐÏßlµÄ·½³Ì£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬Çó³ö½»µãA£¬BµÄ×ø±ê£¬½ø¶øÇó³öÏòÁ¿$\overrightarrow{CA}$£¬$\overrightarrow{CB}$µÄ×ø±ê£¬´úÈëÏòÁ¿ÊýÁ¿»ý¹«Ê½£¬¿ÉµÃ´ð°¸£»
£¨2£©Çó³öÔ²ÉÏÒ»µãMµÄÇÐÏß·½³Ì£¬ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬N£¨x£¬y£©£¬ÓÉÍÖÔ²·½³Ì£¬ÔËÓõã²î·¨ºÍÖеã×ø±ê¹«Ê½£¬¿ÉµÃCDµÄбÂÊ£¬½áºÏm2+n2=1£¬ÏûÈ¥m£¬n¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃÔ²x2+y2=8£¬¹ýM£¨2£¬2£©µÄÇÐÏß·½³ÌΪy-2=-£¨x-2£©£¬
¼´Îªy=4-x£¬
´úÈëÍÖÔ²E£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$£¬¿ÉµÃ£º13x2-32x-80=0£¬
½âµÃ£º$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=-\frac{20}{13}}\\{y=\frac{72}{13}}\end{array}\right.$£¬¼´ÓÐA£¨4£¬0£©£¬B£¨-$\frac{20}{13}$£¬$\frac{72}{13}$£©£¬
ÓÖÓÉC£¨4£¬4£©µÃ£º$\overrightarrow{CA}$=£¨0£¬-4£©£¬$\overrightarrow{CB}$=£¨-$\frac{72}{13}$£¬$\frac{20}{13}$£©
¡à$\overrightarrow{CA}$•$\overrightarrow{CB}$=0¡Á£¨-$\frac{72}{13}$£©+£¨-4£©¡Á$\frac{20}{13}$=-$\frac{80}{13}$£»
£¨2£©Ô²x2+y2=1£¬ÉèM£¨m£¬n£©£¬ÔòÇÐÏߵķ½³ÌΪl£ºmx+ny=1£¬ÇÒm2+n2=1£¬
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬N£¨x£¬y£©£¬
ÓÉNÊÇÏß¶ÎCDµÄÖе㣬¿ÉµÃ2x=x1+x2£¬2y=y1+y2£¬
ÓÉ$\frac{{{x}_{1}}^{2}}{16}+\frac{{{y}_{1}}^{2}}{36}$=1£¬$\frac{{{x}_{2}}^{2}}{16}$+$\frac{{{y}_{2}}^{2}}{36}$=1£¬Á½Ê½Ïà¼õ¿ÉµÃ$\frac{£¨{x}_{1}-{x}_{2}£©£¨{x}_{1}+{x}_{2}£©}{16}$+$\frac{£¨{y}_{1}-{y}_{2}£©£¨{y}_{1}+{y}_{2}£©}{36}$=0£¬
´úÈëÖеã×ø±ê¹«Ê½¿ÉµÃ$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{9x}{4y}$£¬
¼´ÓÐ$\frac{m}{n}$=$\frac{9x}{4y}$£¬ÓÖm2+n2=1£¬½âµÃm=$\frac{9x}{\sqrt{81{x}^{2}+16{y}^{2}}}$£¬n=$\frac{4y}{\sqrt{81{x}^{2}+16{y}^{2}}}$£¬
´úÈëmx+ny=1£¬»¯¼ò¿ÉµÃ£¬
81x4+16y4+72x2y2-81x2-16y2=0£®
ÔòÓÐÖеãNµÄ¹ì¼£·½³ÌΪ81x4+16y4+72x2y2-81x2-16y2=0£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£ºÏàÇУ¬Í¬Ê±¿¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÔËÓõã²î·¨ºÍÖеã×ø±ê¹«Ê½£¬Çó¹ì¼£µÄ·½³ÌµÄ·½·¨£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬BCÊÇÔ²OµÄÒ»ÌõÏÒ£¬ÑÓ³¤BCÖÁµãE£¬Ê¹µÃBC=2CE£¬¹ýE×÷Ô²OµÄÇÐÏߣ¬AΪÇе㣬¡ÏBACµÄƽ·ÖÏßAD½»BCÓÚµãD£¬DE=$\sqrt{3}$£¬ÔòBEµÄ³¤Îª3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãE1£¬F1·Ö±ðÊÇA1B1£¬C1D1µÄÒ»¸öËĵȷֵ㣬
£¨1£©ÇóBE1ÓëDF1Ëù³ÉµÄ½ÇµÄÓàÏÒÖµ£»
£¨2£©ÇóÖ¤£ºA1B¡ÍAC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ö±Ïßa¡Îb£¬b¡Íc£¬ÔòaÓëcµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®ÒìÃæB£®Æ½ÐÐC£®´¹Ö±D£®Ïཻ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÔÕýÀâÖùÁ½¸öµ×ÃæµÄÄÚÇÐÔ²ÃæÎªµ×ÃæµÄÔ²Öù½Ð×öËüµÄÄÚÇÐÔ²Öù£¬ÒÔÕýÀâÖùÁ½¸öµ×ÃæµÄÍâ½ÓÔ²ÃæÎªµ×ÃæµÄÔ²Öù½Ð×öËüµÄÍâ½ÓÔ²Öù£®
£¨¢ñ£©ÇóÕýÈýÀâÖùÓëËüµÄÍâ½ÓÔ²ÖùµÄÌå»ýÖ®±È£»
£¨¢ò£©ÈôÕýÈýÀâÖùµÄ¸ßΪ6cm£¬ÆäÄÚÇÐÔ²ÖùµÄÌå»ýΪ24¦Ðcm3£¬ÇóÕýÈýÀâÖùµÄµ×Ãæ±ß³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬AB=5£¬BC=4£¬AC=3£¬µãDÊÇÏß¶ÎPBµÄÖÐµã£¬Æ½ÃæPAC¡ÍÆ½ÃæABC£®
£¨1£©ÔÚÏß¶ÎABÉÏÊÇ·ñ´æÔÚµãE£¬Ê¹µÃDE¡ÎÆ½ÃæPAC£¿Èô´æÔÚ£¬Ö¸³öµãEµÄλÖ㬲¢¼ÓÒÔÖ¤Ã÷£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©ÇóÖ¤£ºPA¡ÍBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬AD¡ÍAB£¬AD=1£¬BC=2£¬EΪCDÉÏÒ»µã£¬ÇÒDE=1£¬EC=2£¬ÏÖÑØBEÕÛµþÊ¹Æ½ÃæBCE¡ÍÆ½ÃæABED£¬FΪBEµÄÖе㣮ͼ2Ëùʾ£®
£¨1£©ÇóÖ¤£ºAE¡ÍÆ½ÃæBCE£»
£¨2£©ÄÜ·ñÔÚ±ßABÉÏÕÒµ½Ò»µãPÊ¹Æ½ÃæACEÓëÆ½ÃæPCFËù³É½ÇµÄÓàÏÒֵΪ$\frac{2}{3}$£¿Èô´æÔÚ£¬ÊÔÈ·¶¨µãPµÄλÖã¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â²»µÈʽ£º2£¼ex+$\frac{1}{{e}^{x}}$£¼2b-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ä³ÆóÒµ¿ª·¢ÁËÒ»ÖÖвúÆ·£¬Îª¾¡¿ì´ò¿ªÊг¡£¬Êг¡²¿Õë¶Ô¸Ã²úÆ·µÄÏúÊÛ¼Ûλµ÷²éÁË2000ÈË£¬²¢°Ñ¸Ã²úÆ·µÄÏúÊÛ¼Ûλ»­³ÉÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£¬ÎªÖƶ¨¾ßÌåµÄÏúÊÛ¼Û¸ñ£¬¼Æ»®Ó÷ֲã³éÑùµÄ·½·¨´Óµ÷²éµÄÈËÖгé³önÈË×÷½øÒ»²½µ÷²é£¬ÒÑÖªÐÄÀíÏúÊÛ¼Ûλ¶¨Î»ÓÚ30ÔªÖÁ35ÔªÖ®¼äµÄÈËÊýΪ12£¬Ôòn=80£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸