精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
x2-3x-4
的定义域为A,函数g(x)=
2-|x+a|
的定义域为B,若A∩B=∅,求实数a的取值范围.
考点:函数的定义域及其求法
专题:计算题,函数的性质及应用
分析:由题意可得A=(-∞,-1)∪(4,+∞);B⊆[-1,4];由2-|x+a|≥0得-2-a≤x≤2-a,从而解得.
解答: 解:由题意,x2-3x-4>0;
故A=(-∞,-1)∪(4,+∞);
∵A∩B=∅,
∴B⊆[-1,4];
由2-|x+a|≥0得,
|x+a|≤2;
故-2-a≤x≤2-a;
故-1≤-2-a≤2-a≤4,
解得,-2≤a≤-1.
点评:本题考查了函数的定义域的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

公差不为零的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-(log2b+loga2)+logab=0的两根为-1和2,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分贝为F1,F2,右顶点为A,P为椭圆C上一点,
PF1
PF2
的最大值为3,最小值为2.
(1)求椭圆C的方程.
(2)若直线l过点(
2
7
,0),且与椭圆C交于M、N两点.
①若直线l与x轴垂直,证明MA⊥NA.
②求证:以MN为直径的圆过一定点,并求出该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

求与直线3x+y+1=0垂直且在两坐标轴上截距之和为
2
3
的直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设 F1F2分别为双曲线x2-y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF为直角,则sin∠PF1F2的所有可能取值之和为(  )
A、
8
3
B、2
C、
6
D、
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD-A1B1C1D1为正方体,任作平面a与对角线AC′垂直,使得a与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S,周长为l,则(  )
A、S为定值,l不为定值
B、S不为定值,l为定值
C、S与l均为定值
D、S与l均不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为a的正△ABC的中线AF与中位线DE相交于点G,现将△AED沿DE翻折为△A′ED,如图是翻折过程中的一个图形,则下列四个结论:
①动直线A′F与直线DE互相垂直;
②恒有平面A′GF⊥平面BCED;
③四棱锥A′-BCED的体积有最大值;
④三棱锥A′-DEF的侧面积没有最大值.
其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx-cosx+sinxcosx,x∈[0,π]的最大值是
 
,最小值是
 

查看答案和解析>>

同步练习册答案