精英家教网 > 高中数学 > 题目详情
等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an•2n-1,求{bn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
2a1+3a1+3d=11
2(a1+2d)=a1+d+a1+5d-4
,由此能求出an=2n-1.
(2)由bn=an•2n-1=(2n-1)•2n-1,利用错位相减法能求出{bn}的前n项和Tn
解答: 解:(1)由已知得
2a1+3a1+3d=11
2(a1+2d)=a1+d+a1+5d-4

解得a1=1.d=2.
∴an=1+(n-1)×2=2n-1.
(2)∵bn=an•2n-1=(2n-1)•2n-1
∴Tn=1•20+3•2+5•22+…+(2n-1)•2n-1,①
2Tn=1•2+3•22+5•23+…+(2n-1)•2n,②
①-②,得:-Tn=1+22+23+…+2n-(2n-1)•2n
=1+
4(1-2n-1)
1-2
-(2n-1)•2n
=-3+2n-1-(2n-1)•2n
∴Tn=(2n-1)•2n-2n-1+3.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点A(1,0)的直线l1与曲线C:
x=2+2cosα
y=1+2sinα
(α是参数)交于P,Q两点,与直线l2:x+y+2=0交于点N.若PQ的中点为M,
(1)求|AM|•|AN|的值;
(2)求|AP|+|AQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,对任意n∈N*,都有
a
 
n+1
=
a
 
n
2
a
 
n
+1
b
 
n
=
1
a
 
n

(Ⅰ)证明:数列{bn}为等差数列,并求出an
(Ⅱ)设数列{an•an+1}的前n项和为Tn,求证:
T
 
n
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为4,点E在CD上,且DE:EC=1:3,F为AD的中点,则
AE
 • 
BF
=(  )
A、-4B、8C、4D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

设∫f(x)dx=x2e2x+C,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

cosα+
3
sinα化简的结果可以是(  )
A、cos(-α)
B、2cos(
π
3
-α)
C、
1
2
cos(
π
3
-α)
D、2cos(
π
6
-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+
1
2
x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若函数g(x)=
4x
4x+2
,令bn=g(
an
2015
)(n∈N*)求数列{bn}的前2014项的和T2014

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).
(Ⅰ)求数列{an}的通项公式及前n项和Sn
(Ⅱ)设Tn=|a1|+|a2|+|a3|+…+|an|,求T10

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足条件:①?x∈R,f(x)>0;②?x1,x2∈R,f(x1+x2)=f(x1)f(x2);③f(2)<1.则:
(1)f(x)=
 
;(写出一个满足条件的函数即可)
(2)根据(1)所填函数f(x),f(-1)=
 

查看答案和解析>>

同步练习册答案