精英家教网 > 高中数学 > 题目详情
15.设实数x,y满足约束条件$\left\{\begin{array}{l}x≥0,y≥0\\ x-y+2≥0\\ 3x-y-2≤0\end{array}\right.$若目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{2}{b}$的最小值为(  )
A.3B.5C.7D.9

分析 作出不等式对应的平面区域,利用z的几何意义确定取得最大值的条件,然后利用基本不等式进行求则$\frac{1}{a}$+$\frac{1}{b}$的最小值.

解答 解:由z=ax+by(a>0,b>0)得$y=-\frac{a}{b}x+\frac{z}{b}$,
∵a>0,b>0,∴直线的斜率$-\frac{a}{b}<0$,
作出不等式对应的平面区域如图:
平移直线得$y=-\frac{a}{b}x+\frac{z}{b}$,由图象可知当直线$y=-\frac{a}{b}x+\frac{z}{b}$经过点A时,直线$y=-\frac{a}{b}x+\frac{z}{b}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y+2=0}\\{3x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即A(2,4),
此时目标函数z=ax+by(a>0,b>0)的最大值为2,
即2a+4b=2,∴a+2b=1,
$\frac{1}{a}+\frac{2}{b}$=($\frac{1}{a}+\frac{2}{b}$)×1=($\frac{1}{a}+\frac{2}{b}$)×(a+2b)=1+4+$\frac{2b}{a}$+$\frac{2a}{b}$≥5+2$\sqrt{\frac{2b}{a}•\frac{2a}{b}}$=5+2×2=5+4=9,
当且仅当$\frac{2b}{a}$=$\frac{2a}{b}$,即a=b时取等号.
故最小值为9,
故选:D.

点评 本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某高级中学采用系统抽样的方法从全体1260名学生中抽取60名学生做视力健康检查,现将1260名学生从1~1260进行编号,若在抽取的样本中有一个编号为355,则样本中最小的编号是(  )
A.19B.18C.17D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化简:C${\;}_{3}^{3}$+C${\;}_{4}^{3}$+C${\;}_{5}^{3}$+C${\;}_{6}^{3}$=35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,a2=-2,a7+a8+a9=30,且Sn=126,则n=(  )
A.6B.9C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=1$,且向量$\overrightarrow a$与$\overrightarrow b$不共线.
(1)若$\overrightarrow a$与$\overrightarrow b$的夹角为45°,求$(2\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)$;
(2)若向量$k\overrightarrow a+\overrightarrow b$与$k\overrightarrow a-\overrightarrow b$的夹角为钝角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x),对任意x都满足f(4x+4)=f(4x),则f(x)的最小正周期是(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设Ω是由满足下列两个条件的函数f(x)构成的集合:①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(0)<1.
(1)判断函数g(x)=$\frac{x}{2}$-$\frac{lnx}{2}$+3(x>1)是否为集合Ω中的元素,并说明理由;
(2)设函数f(x)为集合Ω中的任意一个元素,对于定义域中任意的α,β,当|α-2015|<1,且|β-2015|<1时,证明:|f(α)-f(β)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a=${∫}_{0}^{π}$(sinx)dx,(1-ax)2016=a0+a1x+a2x2+a3x3+…+a2016x2016,则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:直线y=x+m与圆x2+y2=4有两个交点,命题q:函数y=mx-ex为R上为减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案