19£®PM2.5ÊÇÖ¸´óÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³ÆÎª¿ÉÈë·Î¿ÅÁ£ÎËüÊÇÐγÉÎíö²ÌìÆøµÄÖ÷ÒªÔ­ÒòÖ®Ò»£®PM2.5ÈÕ¾ùֵԽС£¬¿ÕÆøÖÊÁ¿Ô½ºÃ.2012Äê2ÔÂ29ÈÕ£¬¹ú¼Ò»·±£²¿·¢²¼µÄ¡¶»·¾³¿ÕÆøÖÊÁ¿±ê×¼¡·¼û±í£º
Õë¶ÔÈÕÇ÷ÑÏÖØµÄÎíö²Çé¿ö¸÷µØ»·±£²¿ÃÅ×öÁË»ý¼«µÄÖÎÀí£®Âí°°É½Êл·±£¾Ö´ÓÊÐÇø2015Äê11Ô¡«12ÔºÍ2016Äê11Ô¡«12ÔµÄPM2.5¼ì²âÊý¾ÝÖи÷Ëæ»ú³éÈ¡15ÌìµÄÊý¾ÝÀ´·ÖÎöÖÎÀíЧ¹û£®Ñù±¾Êý¾ÝÈ羥ҶͼËùʾ£¨Ê®Î»Îª¾¥£¬¸öλΪҶ£©
PM2.5ÈÕ¾ùÖµk£¨Î¢¿Ë£©¿ÕÆøÖÊÁ¿µÈ¼¶
k¡Ü35Ò»¼¶
35£¼k£¼75¶þ¼¶
k£¾75³¬±ê
£¨¢ñ£©·Ö±ðÇóÕâÁ½ÄêÑù±¾Êý¾ÝµÄÖÐλÊýºÍƽ¾ùÖµ£¬²¢ÒÔ´ËÍÆ¶Ï2016Äê11Ô¡«12ÔÂµÄ¿ÕÆøÖÊÁ¿ÊÇ·ñ±È2015ÄêͬÆÚÓÐËùÌá¸ß£¿
£¨¢ò£©ÔÚ2016ÄêµÄÑù±¾Êý¾ÝÖÐËæ»ú³éÈ¡3Ì죬ÒÔX±íʾ³éµ½¿ÕÆøÖÊÁ¿ÎªÒ»¼¶µÄÌìÊý£¬ÇóXµÄ·Ö²¼ÁÐÓëÆÚÍû£®
 

·ÖÎö £¨1£©ÀûÓÃÆ½¾ùÊý¼ÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨2£©2016ÄêµÄ15¸öÊý¾ÝÖÐÓÐ4Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬¹ÊXµÄËùÓпÉÄÜȡֵÊÇ0£¬1£¬2£¬3£¬ÀûÓÃP£¨X=k£©=$\frac{{∁}_{4}^{3-k}{∁}_{11}^{k}}{{∁}_{15}^{3}}$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©2015ÄêÊý¾ÝµÄÖÐλÊýÊÇ58£¬Æ½¾ùÊýÊÇ$\frac{28+31+31+41+41+44+45+58+60+61+75+77+84+92+98}{15}$¡Ö57.3
2016ÄêÊý¾ÝµÄÖÐλÊýÊÇ51£¬Æ½¾ùÊýÊÇ$\frac{17+18+23+30+39+39+49+51+52+55+58+62+63+69+70}{15}$
¡Ö46.3£®
2016Äê11Ô¡«12Ô±È2015Äê11Ô¡«12ÔÂµÄ¿ÕÆøÖÊÁ¿ÓÐÌá¸ß£®
£¨2£©2016ÄêµÄ15¸öÊý¾ÝÖÐÓÐ4Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬¹ÊXµÄËùÓпÉÄÜȡֵÊÇ0£¬1£¬2£¬3£¬
ÀûÓÃP£¨X=k£©=$\frac{{∁}_{4}^{3-k}{∁}_{11}^{k}}{{∁}_{15}^{3}}$¿ÉµÃ£º
P£¨X=0£©=$\frac{33}{91}$£¬P£¨X=1£©=$\frac{44}{91}$£¬P£¨X=2£©=$\frac{66}{455}$£¬P£¨X=3£©=$\frac{4}{455}$£®

X0123
P$\frac{33}{91}$$\frac{44}{91}$$\frac{66}{455}$$\frac{4}{455}$
E£¨X£©=0+1¡Á$\frac{44}{91}$+2¡Á$\frac{66}{455}$+3¡Á$\frac{4}{455}$=$\frac{4}{5}$£®

µãÆÀ ±¾Ì⿼²éͳ¼ÆºÍÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êý$f£¨x£©=lnx+\frac{1}{2x}$£®
£¨¢ñ£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Éèg£¨x£©=f£¨x£©-m£®Èôº¯Êýg£¨x£©ÔÚÇø¼ä$[{\frac{1}{e}\;£¬\;1}]$ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÇóʵÊýmµÄȡֵ·¶Î§£¨×¢£ºeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª$x¡ÊR£¬a={x^2}+\frac{1}{2}£¬b=2-x£¬c={x^2}-x+1$£¬ÊÔÓ÷´Ö¤·¨Ö¤Ã÷£ºa£¬b£¬cÖÐÖÁÉÙÓÐÒ»¸ö²»Ð¡ÓÚ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚ¡÷ABCÖУ¬A=75¡ã£¬C=60¡ã£¬c=1£¬Ôò±ßbµÄ³¤Îª$\frac{{\sqrt{6}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©¼ÆËã$\frac{1-i}{{{{£¨1+i£©}^2}}}+\frac{1+i}{{{{£¨1-i£©}^2}}}$
£¨2£©ÇóÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚ×ø±êÖáÉÏ£¬²¢ÇÒ¾­¹ýµãP£¨3£¬$\frac{15}{4}$£©ºÍQ£¨$\frac{16}{3}$£¬5£©µÄË«ÇúÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨-$\frac{3}{4}$£¬0£©³ÉÖÐÐĶԳƣ¬ÇÒ¶ÔÈÎÒâµÄʵÊýx¶¼ÓÐ$f£¨x£©=-f£¨x+\frac{3}{2}£©$£¬f£¨-1£©=1£¬f£¨0£©=-2£¬Ôòf£¨1£©+f£¨2£©+¡­+f£¨2 017£©=£¨¡¡¡¡£©
A£®0B£®-2C£®1D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬Èô$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$=2£¬ÄÇôc=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôÖ±ÏßlÓëÍÖÔ²$C£º\frac{x^2}{9}+\frac{y^2}{5}=1$½»ÓÚA£¬BÁ½µã£¬ÈôA£¬BÖеã×ø±êΪ£¨1£¬1£©£¬ÔòÏÒABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪ5x+9y-14=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êý$f£¨x£©=lg\frac{1+ax}{1-2x}$ÊǶ¨ÒåÔÚ£¨-b£¬b£©ÉÏµÄÆæº¯Êý£¬£¨a£¬b¡ÊRÇÒa¡Ù-2£©£¬ÔòabµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{1£¬\sqrt{2}}]$B£®$£¨{0£¬\sqrt{2}}]$C£®$£¨{1£¬\sqrt{2}}£©$D£®$£¨{0£¬\sqrt{2}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸