精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A、B、C所对的边分别为a、b、c,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,那么c=2.

分析 可画出图形,进行数量积的运算便可由$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}=2$得到bccosA=accosB=2,由正弦定理即可得出A=B,进而得到a=b,然后由余弦定理,根据bccosA=2即可求出c的值.

解答 解:如图,

∵$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}=2$;
∴bccosA=accosB=2;
∴bcosA=acosB;
根据正弦定理,b=2RsinB,a=2RsinA,代入上式:2RsinBcosA=2RcosBsinA;
∴sinBcosA=cosBsinA;
∴sin(B-A)=0;
∵A,B∈(0,π);
∴A=B;
∴a=b
由余弦定理,$cosA=\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{c}{2b}$,代入bccosA=2得:$bc•\frac{c}{2b}=2$;
∴c2=4;
∴c=2.
故答案为:2.

点评 考查了数量积的计算公式,以及正余弦定理,等腰三角形的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=loga(6-ax)在(-3,2)上是减函数,则a的取值范围是(  )
A.(0,3)B.(1,3]C.(1,3)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线的参数方程为$\left\{\begin{array}{l}x=1+2cosθ\\ y=2+3sinθ\end{array}\right.(θ为参数)$,则该曲线的普通方程为(  )
A.$\frac{{{{(x+1)}^2}}}{4}-\frac{{{{(y+2)}^2}}}{9}=1$B.$\frac{{{{(x-1)}^2}}}{4}-\frac{{{{(y-2)}^2}}}{9}=1$C.$\frac{{{{(x+1)}^2}}}{4}+\frac{{{{(y+2)}^2}}}{9}=1$D.$\frac{{{{(x-1)}^2}}}{4}+\frac{{{{(y-2)}^2}}}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它是形成雾霾天气的主要原因之一.PM2.5日均值越小,空气质量越好.2012年2月29日,国家环保部发布的《环境空气质量标准》见表:
针对日趋严重的雾霾情况各地环保部门做了积极的治理.马鞍山市环保局从市区2015年11月~12月和2016年11月~12月的PM2.5检测数据中各随机抽取15天的数据来分析治理效果.样本数据如茎叶图所示(十位为茎,个位为叶)
PM2.5日均值k(微克)空气质量等级
k≤35一级
35<k<75二级
k>75超标
(Ⅰ)分别求这两年样本数据的中位数和平均值,并以此推断2016年11月~12月的空气质量是否比2015年同期有所提高?
(Ⅱ)在2016年的样本数据中随机抽取3天,以X表示抽到空气质量为一级的天数,求X的分布列与期望.
 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某学校拟安排6名教师在元旦期间(2016年12月31日至2017年1月2日)值班,每天安排2人,每人值班1天,若6名教师中的甲12月31日不值班,乙1月2日不值班,则不同的安排方法共有(  )
A.30种B.36种C.42种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线a∥平面α,直线b⊥平面α,则直线a与直线b的位置关系为(  )
A.异面B.垂直
C.平行D.平行或异面或相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一质点P从(1,0)出发,在单位圆上按逆时针方向作圆周运动,若经过弧长为x,则P的坐标(用x表示)为(cosx,sinx).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在矩形ABCD中,AD=1,AB=$\sqrt{3}$,将△ABD折起到△PBD的位置,使得面PBD⊥面BCD,若P、B、C、D四点在同一球面上,则球的体积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.观察下列等式:

可以推测:13+23+33+…+n3=________(n∈N*,用含n的代数式表示).(  )
A.$\frac{1}{4}{n^2}{(n-1)^2}$B.$\frac{1}{4}{n^2}{(n-2)^2}$C.$\frac{1}{4}{n^2}{(n+1)^2}$D.$\frac{1}{4}{n^2}{(n+2)^2}$

查看答案和解析>>

同步练习册答案