精英家教网 > 高中数学 > 题目详情
10.已知$x∈R,a={x^2}+\frac{1}{2},b=2-x,c={x^2}-x+1$,试用反证法证明:a,b,c中至少有一个不小于1.

分析 假设a,b,c均小于1,即a<1,b<1,c<1则有a+b+c<3,再结合配方法,引出矛盾,即可得出结论.

解答 证明:假设a,b,c均小于1,即a<1,b<1,c<1则有a+b+c<3,
而$a+b+c=2{x^2}-2x+\frac{7}{2}=2{(x-\frac{1}{2})^2}+3≥3$矛盾,所以原命题成立.

点评 用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知O为坐标原点,点A的坐标为(3,-1),点P(x,y)的坐标满足不等式组$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,若$z=\overrightarrow{OP}•\overrightarrow{OA}$的最大值为7,则实数a的值为(  )
A.-7B.-1C.1D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=loga(6-ax)在(-3,2)上是减函数,则a的取值范围是(  )
A.(0,3)B.(1,3]C.(1,3)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C1和抛物线C2的焦点均在x轴上,从两条曲线上各取两个点,将其坐标混合记录于表中:
x$-\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$$-\sqrt{2}$-13
(1)求椭圆C1和抛物线C2的标准方程;
(2)过椭圆C1右焦点F的直线l与此椭圆相交于A,B两点,点P(4,0),设$\overrightarrow{FA}=λ\overrightarrow{FB},λ∈[{-2,-1}]$,求$|{\overrightarrow{PA}+\overrightarrow{PB}}|$取最大值时,直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆(x+a)2+y2=4截直线x-y-4=0所得的弦的长度为$2\sqrt{2}$,则a等于(  )
A.$±2\sqrt{2}$B.6C.2或6D.-2或-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦点分别为F1(-3,0),F2(3,0).点P(x0,y0)是椭圆C在x轴上方的动点,且△PF1F2的周长为16.
(I)求椭圆C的方程;
(II)设点Q到△PF1F2三边的距离均相等.当x0=3时,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线的参数方程为$\left\{\begin{array}{l}x=1+2cosθ\\ y=2+3sinθ\end{array}\right.(θ为参数)$,则该曲线的普通方程为(  )
A.$\frac{{{{(x+1)}^2}}}{4}-\frac{{{{(y+2)}^2}}}{9}=1$B.$\frac{{{{(x-1)}^2}}}{4}-\frac{{{{(y-2)}^2}}}{9}=1$C.$\frac{{{{(x+1)}^2}}}{4}+\frac{{{{(y+2)}^2}}}{9}=1$D.$\frac{{{{(x-1)}^2}}}{4}+\frac{{{{(y-2)}^2}}}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它是形成雾霾天气的主要原因之一.PM2.5日均值越小,空气质量越好.2012年2月29日,国家环保部发布的《环境空气质量标准》见表:
针对日趋严重的雾霾情况各地环保部门做了积极的治理.马鞍山市环保局从市区2015年11月~12月和2016年11月~12月的PM2.5检测数据中各随机抽取15天的数据来分析治理效果.样本数据如茎叶图所示(十位为茎,个位为叶)
PM2.5日均值k(微克)空气质量等级
k≤35一级
35<k<75二级
k>75超标
(Ⅰ)分别求这两年样本数据的中位数和平均值,并以此推断2016年11月~12月的空气质量是否比2015年同期有所提高?
(Ⅱ)在2016年的样本数据中随机抽取3天,以X表示抽到空气质量为一级的天数,求X的分布列与期望.
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在矩形ABCD中,AD=1,AB=$\sqrt{3}$,将△ABD折起到△PBD的位置,使得面PBD⊥面BCD,若P、B、C、D四点在同一球面上,则球的体积为$\frac{4π}{3}$.

查看答案和解析>>

同步练习册答案